КОНСТРУКЦИОННАЯ НИЗКОЛЕГИРОВАННАЯ ЛИТЕЙНАЯ СТАЛЬ Российский патент 2011 года по МПК C22C38/60 C22C38/40 

Описание патента на изобретение RU2414523C2

Изобретение относится к области металлургии, в частности к конструкционным низколегированным литейным сталям, используемым для изготовления ответственных деталей машин и механизмов с толщиной стенок до 50 мм, работающих при ударных и циклически изменяющихся нагрузках и в условиях трения (балансиры, барабаны, кронштейны, катки и др.).

Известна конструкционная низколегированная литейная сталь (А.с. СССР №595419, МПК С22С 38/50, 1978), содержащая, мас.%:

Углерод 0,15-0,20 Кремний 0,30-0,60 Марганец 1,20-1,50 Хром 1,20-1,50 Никель 1,80-2,20 Молибден 0,20-0,30 Медь 0,80-1,20 Титан 0,10-0,15 Церий 0,05-0,10 Ванадий 0,10-0,15 Кальций 0,03-0,08 Азот 0,008-0,02 Барий 0,05-0,10 Железо остальное.

Известная сталь имеет высокую прочность и износостойкость, но низкую ударную вязкость и повышенную склонность к трещинообразованию.

Известна также конструкционная низколегированная сталь (А.с. ЧССР №185825, МПК С22С 38/44, 1980) следующего состава, мас.%:

Углерод 0,25-0,35 Кремний 0,40-0,60 Марганец 0,40-0,80 Никель 0,40-0,60 Хром 0,50-0,70 Молибден 0,40-0,60 Ванадий 0,05-0,10 Фосфор до 0,025 Сера до 0,025 Железо остальное.

Эта сталь с большим содержанием легирующих добавок обладает высокой твердостью и износостойкостью, но низкими показателями ударной вязкости и используется только для массивных отливок, не подвергаемых ударным нагрузкам.

Наиболее близкой по технической сущности и достигаемому эффекту является конструкционная низколегированная литейная сталь марки 32Х06Л (ГОСТ 977-88), содержащая, мас.%:

Углерод 0,25-0,35 Кремний 0,20-0,40 Марганец 0,40-0,90 Хром 0,50-0,80 Фосфор до 0,05 Сера до 0,05 Железо остальное.

После закалки и отпуска известная сталь обладает следующими свойствами: предел текучести - 441-450 МПа; ударная вязкость - 49,1-53,0 Дж/см2; средний износ при сухом трении - 420-450 мг/гс. Известная сталь склонна к трещинам и обладает низкой пластичностью. Относительное удлинение составляет 10-12%.

Задачей данного технического решения является повышение упругопластических свойств, износо- и трещиностойкости стали.

Поставленная задача решается тем, что конструкционная низколегированная литейная сталь, содержащая углерод, кремний, марганец, хром, фосфор, серу и железо, дополнительно содержит никель, кальций, алюминий и азот при следующем соотношении компонентов, мас.%:

Углерод 0,30-0,35 Кремний 0,20-0,40 Марганец 0,20-0,35 Хром 0,15-0,35 Никель 0,02-0,06 Кальций 0,02-0,05 Алюминий 0,02-0,05 Фосфор 0,02-0,04 Сера 0,01-0,04 Азот 0,002-0,03 Железо остальное.

Проведенный анализ предложенного технического решения показал, что на данный момент не известны технические решения, в которых были бы отражены указанные отличия. Кроме того, указанные признаки являются необходимыми и достаточными для достижения положительного эффекта, указанного в цели изобретения. Это позволяет сделать вывод о том, что данные отличия являются существенными.

Никель 0,02-0,06% и хром в количестве от 0,15 до 0,35% являются основными микролегирующими элементами, повышающими твердость, износостойкость, предел выносливости стали в отливках. Однако при увеличении концентрации никеля и хрома соответственно более 0,06% и 0,35% повышается содержание в структуре по границам зерен карбидов и карбонитридов, что снижает трещиностойкость, эксплуатационные и упругопластические свойства. При их концентрации соответственно менее 0,02% и 0,15% прочность, твердость, износостойкость и предел выносливости существенно снижаются и недостаточны.

Дополнительное введение в сталь 0,02-0,05% кальция обусловлено высокой его модифицирующей способностью и химической активностью, что оказывает значительное влияние на форму и дисперсность структурных составляющих металлической основы, существенно повышая износостойкость, упругопластические свойства и трещиностойкость. При концентрации его менее 0,02% микролегирующее действие и дисперсность структуры недостаточны, а при увеличении содержания кальция более 0,05% значительно повышается угар и снижаются однородность структуры и упругопластические свойства.

Содержание углерода 0,30-0,35% и кремния 0,2-0,4% принято исходя из опыта производства литейных сталей для отливок с перлитной структурой и с высокими характеристиками пластичности. При увеличении концентрации углерода и кремния соответственно выше 0,35% и 0,40% повышаются остаточные термические напряжения в отливках и снижаются упругопластические характеристики стали, а при снижении их концентрации соответственно ниже 0,30% и 0,20% увеличивается содержание феррита в структуре и снижаются твердость, предел текучести, износостойкость и литейные свойства.

Содержание марганца снижено до концентрации 0,20-0,35%, так как при содержании более 0,35% он снижает ударную вязкость и увеличивает склонность к трещинам. При концентрации марганца менее 0,20% износостойкость в отливках недостаточна.

Дополнительное введение азота в количестве 0,002-0,03% обусловлено его влиянием на дисперсность структуры и повышение упругопластических свойств. Снижение пластичности отмечается при повышении содержания азота более 0,03%. При концентрации его менее 0,002% износостойкость и упругопластические свойства недостаточны.

Дополнительное введение в сталь 0,02-0,05% алюминия обусловлено его высокой раскисляющей и нитридообразующей способностью, которая оказывает значительное влияние на дисперсность структуры, повышая упругопластические свойства. При концентрации его менее 0,02% дисперсность структуры недостаточна, а при увеличении содержания его более 0,05% повышается концентрация нитридов алюминия по границам зерен, что снижает однородность структуры и упругопластические свойства стали.

При содержании серы в количестве от 0,01 до 0,04% не отмечается снижение упругопластических свойств, износостойкости, предела выносливости и эксплуатационных свойств. Для снижения концентрации серы менее 0,01% необходимы более чистые и дорогие шихтовые материалы и ферросплавы, а при увеличении ее содержания более 0,04% снижаются характеристики ударной вязкости, износостойкости и трещиностойкости.

Фосфор является перлитизирующим структуру компонентом, повышающим литейные свойства, износостойкость и предел выносливости. Его содержание в количестве от 0,02 до 0,04% обеспечивает существенное повышение трещиностойкости, предела выносливости и литейных свойств. При снижении концентрации фосфора менее 0,02% литейные свойства и трещиностойкость недостаточны, а при увеличении ее содержания более 0,04% снижаются характеристики ударной вязкости, износостойкости и трещиностойкости.

Опытные плавки литейных сталей проводят в индукционных тигельных среднечастотных печах с использованием стального лома, низкоуглеродистого феррохрома, азотированного ферромарганца, ферроникеля и других ферросплавов. Температура расплава перед рафинированием 1650-1670°С. Легирование феррохромом, азотированным ферромарганцем и ферроникелем, производят после рафинирования расплава в печи, а модифицирование - алюминотермическими таблетками, содержащими силикокальций, - в стопорном ковше. Для определения свойств сталей заливают решетчатые, звездообразные и ступенчатые технологические пробы, отливки и образцы для механических испытаний в сухие и жидкостекольные литейные формы. В таблице 1 приведены химические составы литейных сталей опытных плавок.

Определение прочностных свойств сталей проводят по ГОСТ 1497-84 на образцах диаметром 14 мм с расчетной длиной 70 мм, трещиностойкость - на звездообразных 250 мм технологических пробах высотой 140 мм, а предел коррозионной усталости - на стандартных образцах при испытании на базе 107 циклов. Для определения ударной вязкости использовались образцы 10×10×55 мм. В таблице 2 приведены механические и эксплуатационные свойства сталей опытных плавок в отливках, образцах и технологических пробах после закалки с температуры 880-890°С и отпуска при 560-600°С.

Таблица 1 Химические составы литейных сталей опытных плавок Компоненты Содержание компонентов, мас.% (железо - остальное) литейных сталях для составов 1 (Изв.) 2 3 4 5 6 Углерод 0,27 0,12 0,30 0,33 0,35 0,38 Кремний 0,35 0,18 0,20 0,27 0,40 0,46 Марганец 0,78 0,17 0,20 0,22 0,35 0,44 Хром 0,70 0,12 0,15 0,23 0,25 0,38 Фосфор 0,04 0,01 0,02 0,03 0,04 0,07 Никель - 0,01 0,02 0,04 0,06 0,08 Кальций - 0,01 0,02 0,04 0,05 0,06 Алюминий - 0,01 0,02 0,03 0,04 0,05 Сера 0,05 0,01 0,01 0,02 0,04 0,05 Азот - 0,001 0,002 0,012 0,03 0,035

Таблица 2 Механические и эксплуатационные свойства сталей опытных плавок Свойства литейных сталей Показатели свойств для составов литейных сталей опытных плавок 1 (Изв.) 2 3 4 5 6 Предел текучести, МПа 445 437 452 468 460 448 Относительное удлинение, % 12 12 16 20 18 14 Склонность к трещинообразованию (количество трещин в пробе) 9,2 8,4 6,0 7,5 7,2 8,1 Предел коррозионной усталости, МПа 192 194 212 225 232 220 Скорость изнашивания при сухом трении, мг/гс 425 418 340 325 308 392 Ударная вязкость, Дж/см2 46 51 56 65 61 54

Похожие патенты RU2414523C2

название год авторы номер документа
КОНСТРУКЦИОННАЯ НИЗКОЛЕГИРОВАННАЯ ЛИТЕЙНАЯ СТАЛЬ 2010
  • Алов Виктор Анатольевич
  • Карпенко Михаил Иванович
  • Епархин Олег Модестович
  • Просветов Михаил Иванович
  • Куприянов Илья Николаевич
  • Зайцев Владимир Егорович
  • Туров Алексей Михайлович
RU2439193C1
ВЫСОКОПРОЧНЫЙ АНТИФРИКЦИОННЫЙ ЧУГУН 2014
  • Алов Виктор Анатольевич
  • Карпенко Михаил Иванович
  • Епархин Олег Модестович
  • Попков Александр Николаевич
  • Карпенко Валерий Михайлович
  • Алов Василий Викторович
  • Вершинина Нелли Ивановна
RU2581542C1
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ 2012
  • Огольцов Алексей Андреевич
  • Сафронова Наталья Николаевна
  • Шеремет Наталия Павловна
  • Новоселов Сергей Иванович
  • Рыбаков Сергей Александрович
RU2495149C1
ВЫСОКОПРОЧНЫЙ АНТИФРИКЦИОННЫЙ ЧУГУН 2013
  • Алов Виктор Анатольевич
  • Карпенко Михаил Иванович
  • Епархин Олег Модестович
  • Карпенко Валерий Михайлович
  • Попков Александр Николаевич
  • Ершова Вера Федоровна
RU2513363C1
ВЫСОКОПРОЧНЫЙ АНТИФРИКЦИОННЫЙ ЧУГУН 2007
  • Алов Виктор Анатольевич
  • Карпенко Михаил Иванович
  • Епархин Олег Модестович
  • Гунин Анатолий Викторович
  • Синякин Виктор Николаевич
  • Куприянов Илья Николаевич
  • Бадюкова Ульяна Сергеевна
RU2352675C1
ХЛАДОСТОЙКАЯ ARC-СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ 2012
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Сошина Татьяна Викторовна
  • Хомякова Надежда Федоровна
  • Милюц Валерий Георгиевич
  • Павлова Алла Григорьевна
  • Батов Юрий Матвеевич
  • Ларионов Александр Викторович
  • Иванова Елена Александровна
RU2507296C1
НИЗКОЛЕГИРОВАННАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2007
  • Воржев Александр Владимирович
  • Кулаков Вадим Николаевич
  • Любимов Владимир Михайлович
  • Проскурин Владимир Николаевич
  • Яценко Александр Иванович
RU2362815C2
ЛИТАЯ ХЛАДОСТОЙКАЯ СТАЛЬ 2018
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзула Алибала Оглы
  • Юргина Жанна Владимировна
RU2679679C1
ВЫСОКОПРОЧНАЯ ИЗНОСОСТОЙКАЯ СТАЛЬ ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН (ВАРИАНТЫ) 2015
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Рябов Вячеслав Викторович
  • Сошина Татьяна Викторовна
  • Зисман Александр Абрамович
  • Орлов Виктор Валерьевич
  • Беляев Виталий Анатольевич
  • Шумилов Евгений Алексеевич
RU2606825C1
СТАЛЬ ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ 2007
  • Лужанский Илья Борисович
  • Анисимов Виктор Петрович
  • Панченко Игорь Владимирович
RU2340698C1

Реферат патента 2011 года КОНСТРУКЦИОННАЯ НИЗКОЛЕГИРОВАННАЯ ЛИТЕЙНАЯ СТАЛЬ

Изобретение относится к области металлургии, а именно к конструкционным низколегированным литейным сталям, используемым для изготовления ответственных деталей машин и механизмов с толщиной стенок до 50 мм, работающих при ударных и циклических изменяющихся нагрузках и в условиях трения. Сталь содержит углерод, кремний, марганец, хром, никель, кальций, алюминий, азот, серу, фосфор и железо при следующем соотношении компонентов, мас.%: углерод 0,30-0,35, кремний 0,20-0,40, марганец 0,20-0,35, хром 0,15-0,35, никель 0,02-0,06, кальций 0,02-0,05, алюминий 0,02-0,05, азот 0,002-0,03, сера 0,01-0,04, фосфор 0,02-0,04, железо остальное. Повышаются упругопластические свойства, износостойкость и трещиностойкость. 2 табл.

Формула изобретения RU 2 414 523 C2

Конструкционная низколегированная литейная сталь, содержащая углерод, кремний, марганец, хром, никель, кальций, алюминий, азот, серу, фосфор и железо, отличающаяся тем, что она содержит компоненты в следующем соотношении, мас.%:
углерод 0,30-0,35 кремний 0,20-0,40 марганец 0,20-0,35 хром 0,15-0,35 никель 0,02-0,06 кальций 0,02-0,05 алюминий 0,02-0,05 азот 0,002-0,03 сера 0,01-0,04 фосфор 0,02-0,04 железо остальное

Документы, цитированные в отчете о поиске Патент 2011 года RU2414523C2

Устройство для защиты трехфазнойэлЕКТРОуСТАНОВКи OT НЕдОпуСТиМОгОпОНижЕНия НАпРяжЕНия и ОбРыВА фАз 1979
  • Сорокин Геннадий Михайлович
SU849372A1
Сталь 1980
  • Богомолов Борис Николаевич
  • Ткаченко Виктор Петрович
  • Самойленко Василий Андреевич
  • Мухин Евгений Николаевич
  • Модылевский Бернард Борисович
  • Яхкинд Юрий Романович
  • Хромов Виктор Григорьевич
SU945220A1
Сталь 1979
  • Карпенко Михаил Иванович
  • Николаенко Алексей Степанович
  • Карпенко Иван Иванович
  • Марков Дмитрий Иванович
  • Науменко Василий Иванович
  • Мельников Алексей Петрович
SU855061A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1

RU 2 414 523 C2

Авторы

Алов Виктор Анатольевич

Карпенко Михаил Иванович

Епархин Олег Модестович

Попков Александр Николаевич

Соцкая Ирина Марковна

Дайникова Валентина Шагаровна

Бадюкова Ульяна Сергеевна

Ершова Вера Федоровна

Даты

2011-03-20Публикация

2009-03-02Подача