Изобретение относится к области металлургии, а именно к литым хладостойким сталям, которые используют для отливок крупногабаритных деталей строительно-дорожных машин и горно-металлургического оборудования, эксплуатируемых при низких температурах и воздействии высоких статических, динамических и циклических нагрузок.
Известна хладостойкая и износостойкая сталь 27ХГСНДТЛ, отливки которой используют для изготовления цельнолитых зубьев и элементов их крепления одноковшовых экскаваторов, содержащая углерод, кремний, марганец, хром, никель, молибден, медь, титан, редкоземельный металл, фосфор, серу и железо при следующих соотношениях компонентов, мас. %: углерод 0,22-0,31; кремний 0,70-1,30; марганец 0,9-1,5; хром 0,70-1,30; никель 0,70-1,20; молибден 0,10-0,30; медь 0,30-0,50; титан 0,03-0,07; редкоземельный металл (иттрий, церий и др.) 0,02-0,05; фосфор до 0,020; сера до 0,020; железо остальное
(ГОСТ 21357-87, Отливки из хладостойкой и износостойкой стали, Издательство стандартов, 1988, с. 1, с. 2 табл. 1)
Недостатком известной стали являются ее невысокие прочностные характеристики, а также низкая трещиностойкость в процессе эксплуатации при отрицательных температурах до -60°С.
Известна литая хладостойкая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, фосфор, серу, церий, кальций, алюминий и железо при следующих соотношениях компонентов, мас. %: углерод <0,06%, кремний <0,60%, марганец 0,5-1,5, хром 0,35-1,35, никель 2,0-4,0, молибден 0,1-0,5, фосфор <0,03, сера <0,03, церий <0,10, кальций <0,10, алюминий <0,10, железо остальное.
(JPS 56075556, С22С 38/44, опубликовано 22.06.1981)
Однако недостатком известной стали также являются их невысокие прочностные характеристики, а также низкая устойчивость в воздействию ударных и циклических нагрузок при отрицательных температурах до -60°С, в связи с чем ее использование ограничено изготовлением фитингов труб и частей насосного оборудования для транспортировки природного газа, используемых в холодных районах, а также трубопроводов морских сооружений.
Наиболее близкой по технической сущности и достигаемому техническому результату является литая хладостойкая сталь CFE-S (Япония) для изготовления высоконагруженных деталей экскаваторов, содержащая углерод, кремний, марганец, хром, никель, молибден, фосфор, серу и железо при следующем соотношении компонентов, мас. %: углерод 0,28-0,33; кремний 0,30-0,60; марганец 0,60-0,90; хром 0,70-0,90; никель 0,65-2,00; молибден 0,20-0,30; фосфор ≤0,04; сера ≤0,04; железо - остальное
(Солнцев Ю.П., Андреев А.К., Гречин Р.И., Литейные хладостойкие стали, М., Изд. «Металлургия», 1991, с. 147).
Недостатком известной стали, используемой для изготовления деталей, испытывающих высокие статические и динамические нагрузки, является ее склонность к хрупкому разрушению (снижение трещиностойкости) в больших сечениях в процессе эксплуатации при отрицательных температурах до -60°С.
Задачей и техническим результатом изобретения является литая хладостойкая сталь с высокой трещиностойкостью и повышенными прочностными и вязкопластическими характеристиками при низких температурах.
Технический результат достигается тем, что литая хладостойкая сталь содержит углерод, кремний, марганец, хром, никель, молибден, фосфор, серу, ванадий, цирконий, кальций, церий, медь, азот и железо при следующем соотношении компонентов, мас. %:
Углерод в количестве 0,20-0,31 мас. % обеспечивает упрочнение стали и способствует образованию карбидов и карбонитридов. Содержание углерода в выбранных пределах является оптимальным при выбранном интервале содержания остальных легирующих элементов.
Кремний в количестве 0,30-0,60 мас. % используется, как активный раскислитель стали и понижает чувствительность к перегреву.
Марганец в стали в количестве 0,65-0,95 мас. % выбран из условия обеспечения полной раскисленности стали, повышения прокаливаемости и снижения температуры хладноломкости.
Никель в количестве 2,10-2,50% мас. % обеспечивает повышение трещиностойкости стали при отрицательных температурах, особенно в больших сечениях, а также повышение пластичности, вязкости и хладноломкости.
При содержании никеля ниже 2,1 мас. % его влияние на трещиностойкость при отрицательных температурах менее эффективно, так как ослабляет взаимодействие дислокаций с атомами внедрения, а при содержании никеля более 2,5 мас. % трещиностойкость трещиностойкость может снизиться за счет образования аустенита при закалке.
Молибден в стали в количестве 0,30-0,50 мас. % обеспечивает повышение ударной вязкости, уменьшает чувствительность к отпускной хрупкости и повышает трещиностойкость стали при отрицательных температурах.
Цирконий в количестве 0,005-0,02 мас. % способствует измельчению зерна и повышению ударной вязкости и трещиностойкости.
При содержании ванадия 0,08-0,12 мас. %, циркония 0,005-0,02 мас. % и азота 0,005-0,025 мас. % является оптимальным, поскольку при повышенном содержании ванадия и азота трещиностойкость стали снижается, что связано с избыточным обогащением границ зерен карбидами и карбонитридами ванадия и циркония, приводящим к охрупчиванию металла за счет усиления взаимодействия атомов внедрения с дислокациями, повышению степени их блокировки. Это вызывает избыточное повышение прочности и торможение релаксации напряжений, что вызывает снижение сопротивляемости стали хрупкому разрешению.
Таким образом, комплексное легирование стали ванадием, азотом и цирконием повышает трещиностойкость стали за счет связывания углерода и азота в карбиды и карбонитриды и уменьшения блокировки дислокаций и склонности к хрупкому разрушению.
Присутствие меди до 0,30 мас. % повышает коррозионную стойкость стали за счет образования на поверхности отливки слоя оксида типа шпинели, что уменьшает вероятность зарождения трещин. Кроме того, медь в сочетании с низким содержанием серы способствуют повышению стойкости против водородного растрескивания, что способствует также увеличению трещиностойкости при отрицательных температурах.
Оптимальным содержанием кальций является 0,005-0,02 мас. %. При более низком содержании кальция его воздействие на трещиностойкости стали при низких температурах мало эффективно, так как отсутствует его модифицирующее влияние на неметаллические включения и снижение их количества, а при более высоком содержании трещиностойкость стали снижается за счет увеличения неметаллических включений по границам зерен.
Сталь по изобретению отличается низким содержанием серы 0,01 мас. % и фосфора 0,01 мас. %, что обеспечивает высокую трещиностойкость при отрицательных температурах. При содержании серы более 0,01 мас. % трещиностойкость стали снижается за счет увеличения количества сульфидных включений, являющихся концентраторами локальных напряжений, оказывающих охрупчивающее влияние. При содержании фосфора более 0,01 мас. % происходит снижение трещиностойкости за счет обогащения фосфором границ зерен, что может вызвать перераспределение примесей из-за неодновременного протеканий процессов превращения неравновесных структур. Другой причиной, вызывающей снижение хладостойкости при увеличении фосфора более 0,01 мас. %, является искажение кристаллической решетки твердого раствора и ее значительное упрочнение, приводящее к охрупчиванию.
Церий в оптимальных концентрациях 0,02-0,08 мас. % обеспечивает повышение трещиностойкости за счет глобуляризации неметаллических включений и более полной десульфурации металла. При содержании церия более 0,08 мас. % трещиностойкость литой стали снижается за счет интенсификации процессов межзеренного разрушения, что связано с избыточным обогащением бывших границ зерен неметаллическими включениями.
Достижение поставленного технического результата можно проиллюстрировать данными, представленными в таблице.
Выплавку сталей проводили в 150 кг индукционной печи с разливкой металла на отливки сечением 60 мм. Термическая обработка включала закалку от температуры 900-920°С в воду и отпуск при температуре 570-590°С.
Надежность работы сталей при отрицательных температурах характеризует общая ударная вязкость КСо стали, а также ее составляющие:
ударная вязкость зарождения трещины КСз и ударная вязкость развития трещины КСр, которая в основном характеризует хладостойкость этих сталей. Если работа развития трещины низка, это значит, что в процессе работы при низкой температуре, образовавшаяся трещина может привести к ускоренному разрушению литой стали.
Для определения трещиностойкости (работоспособности) сталей были проведены испытания на инструментированном маятниковом копре с максимальной энергией удара 300 Дж, оснащенной системой электронного управления, регистрации, сбора и воспроизведения измерений импульсов. При испытании образцов при температуре -60°С для каждого из них записывали диаграммы в координатах «нагрузка-перемещение» и «энергия-перемещение». Исследование таких диаграмм позволяет определить ударные вязкости зарождения и распространения трещин в ударном образце, а их количественные значения позволяют оценить трещиностойкость сталей.
Испытание на растяжение проводили в соответствии с ГОСТ 14972-73 на цилиндрических образцах пятикратной длины с диаметром расчетной части 6 мм.
Как видно из представленных данных сталь по изобретению имеет более высокую трещиностойкость по сравнению с известной сталью и повышенными прочностными и вязкопластическими характеристиками при низких температурах.
название | год | авторы | номер документа |
---|---|---|---|
Хладостойкая высокопрочная сталь | 2020 |
|
RU2746598C1 |
ТОЛСТОЛИСТОВАЯ ХЛАДОСТОЙКАЯ СТАЛЬ | 2017 |
|
RU2665854C1 |
Экономнолегированная хладостойкая высокопрочная сталь | 2020 |
|
RU2746599C1 |
ТЕПЛОСТОЙКАЯ СТАЛЬ ДЛЯ ВОДООХЛАЖДАЕМЫХ ИЗЛОЖНИЦ | 2012 |
|
RU2494167C1 |
ХЛАДОСТОЙКАЯ СТАЛЬ | 2017 |
|
RU2648426C1 |
ВЫСОКОПРОЧНАЯ СВАРИВАЕМАЯ СТАЛЬ | 2008 |
|
RU2397269C2 |
ХЛАДОСТОЙКАЯ СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ | 2011 |
|
RU2458176C1 |
МАРТЕНСИТНАЯ СТАЛЬ ДЛЯ КРИОГЕННОЙ ТЕХНИКИ | 2015 |
|
RU2594572C1 |
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ ARC-СТАЛЬ | 2012 |
|
RU2507295C1 |
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ | 2019 |
|
RU2700440C1 |
Изобретение относится к области металлургии, а именно к литым хладостойким сталям, используемым для отливок крупногабаритных деталей строительно-дорожных машин и горно-металлургического оборудования, эксплуатируемых при низких температурах и воздействии высоких статических, динамических и циклических нагрузок. Сталь содержит, мас.%: углерод 0,20-0,31, кремний 0,30-0,60, марганец 0,65-0,95, хром 0,8-1,00, никель 2,10-2,50, молибден 0,30-0,50, фосфор ≤ 0,01, сера ≤ 0,01, ванадий 0,08-0,12, цирконий 0,005-0,02, кальций 0,005-0,02, церий 0,02-0,08, медь ≤ 0,30, азот 0,005-0,025, железо - остальное. Обеспечивается высокая трещиностойкость и повышенные прочностные и вязкопластические характеристики при низких температурах.
Литая хладостойкая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, фосфор, серу и железо, отличающаяся тем, что она дополнительно содержит ванадий, цирконий, кальций, церий, медь и азот при следующем соотношении компонентов, мас.%:
углерод 0,20-0,31,
кремний 0,30-0,60,
марганец 0,65-0,95,
хром 0,8-1,00,
никель 2,10-2,50,
молибден 0,30-0,50,
фосфор ≤0,01,
сера ≤0,01,
ванадий 0,08-0,12,
цирконий 0,005-0,02,
кальций 0,005-0,02,
церий 0,02-0,08,
медь ≤0,30,
азот 0,005-0,025,
железо остальное.
US 20160273066 A1, 22.09.2016 | |||
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И БЕСШОВНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ | 2002 |
|
RU2243284C2 |
ВЫСОКОПРОЧНЫЙ ГАЛЬВАНИЗИРОВАННЫЙ ПОГРУЖЕНИЕМ СТАЛЬНОЙ ЛИСТ С ПРЕВОСХОДНОЙ ХАРАКТЕРИСТИКОЙ СОПРОТИВЛЕНИЯ УДАРУ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ВЫСОКОПРОЧНЫЙ, ПОДВЕРГНУТЫЙ ЛЕГИРОВАНИЮ, ГАЛЬВАНИЗИРОВАННЫЙ ПОГРУЖЕНИЕМ СТАЛЬНОЙ ЛИСТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2012 |
|
RU2566121C1 |
Литейная конструкционная сталь | 1983 |
|
SU1151586A1 |
Сталь | 1981 |
|
SU996506A1 |
US 20150376730 A1, 31.12.2015. |
Авторы
Даты
2019-02-12—Публикация
2018-05-31—Подача