Изобретение относится к металлургии, в частности к конструкционным сталям повышенной износостойкости, используемым при производстве сварного кузова большегрузного автомобиля для работы в условиях Крайнего Севера.
Для изготовления кузовов большегрузных самосвалов, работающих при температурах до -40°C, используют горячекатаные листы толщиной 9-25 мм из свариваемой хладостойкой низколегированной стали. Горячекатаные стальные листы должны сочетать высокую прочность и износостойкость.
Известна низколегированная сталь, имеющая следующий химический состав, мас.%:
Недостатки стали известного состава состоят в том, что она имеет низкие прочностные свойства, недостаточные ударную вязкость при температуре -40°С и износостойкость.
Известна низколегированная свариваемая сталь следующего состава, мас.%:
Недостатки стали известного состава состоят в том, что она имеет недостаточные ударную вязкость при температуре -40°C и прочность.
Наиболее близкой по своему составу и свойствам к предлагаемой стали является сталь, содержащая, мас.%:
Недостатком стали известного состава является то, что она имеет недостаточные ударную вязкость при температуре -40°C и прочность.
Техническая задача, решаемая изобретением, состоит в повышении ударной вязкости при отрицательных температурах и прочности.
Для решения поставленной технической задачи предложена сталь, содержащая углерод, марганец, кремний, бор, азот, алюминий, хром, никель, молибден, ванадий, кальций, медь, титан, ниобий, серу, фосфор и железо при следующем соотношении компонентов, мас.%:
Сущность предлагаемого изобретения состоит в том, что при содержании элементов в стали в предложенном соотношении позволяет измельчить ее структуру. В результате возрастает прочность и ударная вязкость стали при -40°C.
Углерод упрочняет сталь. При содержании углерода менее 0,16% не достигается требуемая прочность стали, а при его содержании более 0,19% ухудшается свариваемость стали.
Кремний раскисляет сталь, повышает ее сопротивляемость истиранию. При концентрации кремния менее 0,17% прочность стали ниже допустимой, а при концентрации более 0,37% снижается пластичность.
Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 1,45% прочность и износостойкость стали недостаточны.
Ванадий в сочетании с алюминием являются сильными карбидообразующими элементами. При содержании ванадия менее 0,12% снижаются прочность и пластичность стали. Увеличение содержания ванадия более 0,15% нецелесообразно, т.к. не ведет к дальнейшему улучшению свойств, а лишь увеличивает расход легирующих.
Хром повышает прочность и износостойкость стали. При его концентрации менее 0,85% прочность и износостойкость ниже допустимых значений. Увеличение содержания хрома более 1,00% приводит к потере пластичности из-за роста карбидов хрома.
При содержании никеля менее 1,15% снижается прочность и износостойкость стали.
Молибден повышает прочность и вязкость стали, измельчая зерно микроструктуры. При содержании молибдена менее 0,27% прочность стали ниже требуемого уровня, а увеличение его содержания более 0,35% ухудшает пластичность и приводит к перерасходу легирующих элементов.
При содержании кальция менее 0,01% не происходит достаточной модификации данной стали, а при его содержании более 0,015% он образует крупные неметаллические включения, что снижает ударную вязкость при -40°C.
Ниобий и титан способствуют получению ячеистой дислокационной микроструктуры стали, обеспечивающей сочетание высоких прочностных свойств металла и высокой ударной вязкости при пониженных температурах.
Титан повышает прочность и ударную вязкость стали, измельчая зерно микроструктуры. При содержании титана менее 0,010% прочность стали ниже требуемого уровня, а увеличение его содержания более 0,025% приводит к перерасходу легирующих элементов.
Ниобий повышает прочность и ударную вязкость стали, измельчая зерно микроструктуры. При содержании ниобия менее 0,04% прочность и ударная вязкость стали ниже требуемого уровня, а увеличение содержания ниобия более 0,06% нецелесообразно, т.к. не ведет к дальнейшему улучшению свойств, а лишь увеличивает расход легирующих элементов.
Медь способствует повышению прочностных свойств. Но если содержание этого элемента для данного состава превышает 0,30%, то может иметь место снижение ударной вязкости стали при отрицательных температурах.
Алюминий раскисляет сталь и измельчает зерно. Карбонитриды алюминия являются мелкодисперсными упрочняющими частицами. При содержании алюминия менее 0,03% снижается прочность стали. Увеличение содержания этого элемента более 0,05% приводит к снижению пластических и вязкостных свойств.
Бор упрочняет твердый раствор по механизму внедрения, повышает прочность и износостойкость стали, измельчает микроструктуру. При содержании бора менее 0,003% его влияние незначительно. Увеличение содержания бора более 0,0035% приводит к появлению по границам зерен избыточных фаз (боридов), что снижает ударную вязкость стали при отрицательных температурах.
Азот в стали является карбонитридообразующим элементом, обеспечивающим ее упрочнение. Содержание азота более 0,015% приводит к снижению вязкостных и пластических свойств, что недопустимо.
Фосфор и сера в стали являются вредными примесями, их концентрация должна быть как можно меньшей. Однако при концентрации фосфора не более 0,012% и серы не более 0,005% их отрицательное влияние незначительно.
Пример реализации
Сталь выплавляли в электродуговой печи, разливали в слябы. Слябы подвергали термической обработке при следующих технологических параметрах: скорость нагрева металла - 20-30°C/час; температура нагрева - 870°C; продолжительность выдержки 12 час; скорость охлаждения до температуры 200°C - не более 50°C/час. Затем слябы нагревали до температуры 1200-1260°C и прокатывали на толстолистовом стане 2800 в листы до конечной толщины (9,0-25,0 мм) при температуре конца прокатки 830-860°C. Для листов в толщинах 14,1-25,0 мм производили закалку с температуры 920°C. Затем прокат всех толщин подвергали отпуску при температуре нагрева 600-610°C и времени выдержки 1,5-1,9 мин/мм.
Из табл.1 и 2 следует, что предложенная сталь (составы 2-3) имеет более высокие прочность и ударную вязкость при температуре -40°С. Кроме того сталь характеризуется высокой износостойкостью и свариваемостью.
При запредельных концентрациях элементов (составы 1, 5-9) прочность и ударная вязкость стали ухудшаются, снижается износостойкость. Также более низкие свойства по прочности и ударной вязкости имеет сталь по прототипу (состав 4).
название | год | авторы | номер документа |
---|---|---|---|
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ БЕЙНИТНАЯ СТАЛЬ | 2014 |
|
RU2555306C1 |
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОГО ХЛАДОСТОЙКОГО ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2018 |
|
RU2674797C1 |
Высокопрочный стальной прокат и способ его производства | 2020 |
|
RU2761572C1 |
ВЫСОКОПРОЧНАЯ ИЗНОСОСТОЙКАЯ СТАЛЬ ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН (ВАРИАНТЫ) | 2015 |
|
RU2606825C1 |
СВАРОЧНАЯ ПРОВОЛОКА ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ ПЕРЛИТНОГО КЛАССА | 2013 |
|
RU2530611C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2012 |
|
RU2495942C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2014 |
|
RU2547087C1 |
Способ производства высокопрочного хладостойкого листового проката | 2023 |
|
RU2806645C1 |
ШТРИПСОВАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ | 2009 |
|
RU2420603C1 |
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2008 |
|
RU2375469C1 |
Изобретение относится к области металлургии, а именно к конструкционным высокопрочным сталям повышенной износостойкости, используемым при производстве сварных кузовов большегрузных автомобилей, работающих в условиях Крайнего Севера. Сталь содержит, мас.%: углерод 0,16-0,19, кремний 0,17-0,37, марганец 1,45-1,60, ванадий 0,12-0,15, хром 0,85-1,0, никель 1,15 - 1,30, кальций от более 0,010 до 0,015, молибден 0,27-0,35, медь 0,20-0,30, титан 0,010-0,025, ниобий 0,04-0,06, алюминий 0,03-0,05, бор от более 0,0030 до 0,0035, азот не более 0,010, фосфор не более 0,012, сера не более 0,005, железо остальное. Сталь обладает повышенной ударной вязкостью при отрицательных температурах, характеризуется прочностью и стабильностью механических свойств при сохранении износостойкости. 2 табл., 1 пр.
Высокопрочная хладостойкая свариваемая сталь, содержащая углерод, марганец, кремний, бор, азот, алюминий, хром, никель, молибден, ванадий, кальций, медь, титан, ниобий, серу, фосфор и железо, отличающаяся тем, что она содержит указанные элементы при следующем соотношении, мас.%:
СТАЛЬ С ВЫСОКОЙ ПРОЧНОСТЬЮ НА РАСТЯЖЕНИЕ, ОБЛАДАЮЩАЯ ПРИЕМЛЕМОЙ СТОЙКОСТЬЮ К ЗАМЕДЛЕННОМУ РАЗРУШЕНИЮ, И СПОСОБ ЕЕ ПРОИЗВОДСТВА | 2008 |
|
RU2442839C2 |
СТАЛЬ | 2003 |
|
RU2243288C1 |
СТАЛЬ | 2002 |
|
RU2223343C1 |
СТАЛЬ | 1991 |
|
RU2040583C1 |
Раствор для виброхимического снятия заусенцев | 1986 |
|
SU1375683A1 |
Способ измерения работы выхода для жидкости в газ | 1985 |
|
SU1293581A1 |
Авторы
Даты
2013-10-10—Публикация
2012-03-06—Подача