ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к нанокатализатору на основе переходного металла, способу его приготовления и процессу синтеза Фишера-Тропша с использованием такого катализатора.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Синтез Фишера-Тропша - это реакция, в результате которой из окиси углерода и водорода (общеизвестных как синтетический газ) образуются углеводороды в присутствии некоторых металлических катализаторов, включая железо, кобальт, рутений и др. Продукты синтеза Фишера-Тропша имеют очень широкое и постоянное распространение, начиная с продукта С1 (метана). По мере истощения запасов добываемой нефти синтез Фишера-Тропша приобретает все большую важность, поскольку он дает возможность получать углеводороды (т.е. бензин и дизельное топливо) из имеющихся в относительном изобилии угля, природного газа и биомассы через синтетический газ как промежуточный продукт, сокращая, таким образом, зависимость от запасов нефти. Он имеет очень большое значение как для энергетической безопасности, так и для экономики.
В настоящее время выбор нужных составляющих бензина и дизельного топлива (прежде всего углеводород С5+) требует доработки, тогда как перечень нежелательных видов метана при типичных условиях реакции синтеза Фишера-Тропша необходимо сократить. Также конверсия окиси углерода за однократный проход в целом невелика, что увеличивает эксплуатационные затраты на рециркуляцию синтетического газа. Кроме того, синтез Фишера-Тропша является экзотермической реакцией, для которой благоприятна низкая температура. Однако температура реакции в процессе, используемом в настоящее время, обычно равна 200-350°С, являясь относительно высокой и способной привести к спеканию катализатора. Также в настоящее время в процессе синтеза Фишера-Тропша широко применяются громоздкий плавленый железный катализатор или железный, кобальтовый и рутениевый катализаторы на кремниевой подложке. Такие катализаторы обладают довольно низкой каталитической активностью из-за малой площади поверхности, ограниченных активных участков и отсутствия свободного вращения в трехмерном пространстве, обусловленного ограниченностью поверхности подложек. В литературе рутений отмечается как наиболее активный катализатор для синтеза Фишера-Тропша, за ним следуют железо и кобальт. Каталитическая реакция часто проводится при температуре 200-350°С под суммарным давлением 0,1-5,0 МПа. Несмотря на сообщения о низкой температуре в пределах 100-140°С, требуемой для рутениевого катализатора без подложки, при этом необходимо высокое суммарное давление до 100 МПа (Robert В. Anderson, "The Fischer-Tropschsynthesis",pp.104-105, Academic Press, 1984), а основными продуктами являются полиэтилены высокого молекулярного веса (молекулярный вес >10000).
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Целью настоящего изобретения является создание нанокатализатора на основе переходного металла, способ его приготовления и процесс синтеза Фишера-Тропша с использованием такого катализатора.
Предлагаемый нанокатализатор на основе переходного металла содержит наночастицы переходного металла и полимерные стабилизаторы, причем наночастицы переходного металла диспрегированы в жидкости, образуя стабильные коллоиды.
Размер наночастиц переходного металла равен 1-10 нм, предпочтительно 1,8±0,4 нм. Переходный металл выбирается из группы, в которую входят рутений, кобальт, никель, железо и родий или любые их соединения.
Предлагаемый способ приготовления нанокатализатора на основе переходного металла включает этапы смешивания и диспергирования солей переходных металлов и полимерных стабилизаторов в жидкости и последующего восстановления солей переходных металлов водородом при температуре 100-200°С с получением упомянутого нанокатализатора на основе переходного металла.
Реакция восстановления проходит под суммарным давлением 0,1-4,0 МПа при температуре 100-200°С в течение 2 часов. Молярное отношение полимерных стабилизаторов к солям переходных металлов составляет от 400:1 до 1:1, предпочтительно от 200:1 до 1:1. Концентрации солей переходных металлов, растворенных в жидкости, составляют 0,0014-0,014 моль/л. Соли переходных металлов выбираются из группы солей следующих металлов: рутений, кобальт, никель, железо и родий или каких-либо их соединений. Полимерные стабилизаторы выбираются из поли(N-винил-2-пирролидона) (ПВП) или поли [(N-винил-2-пирролидон)-со-(1-винил-3-алкилимидазолий галоида)] (сокращенно [BVIMPVP]Cl, получаемый способом, упоминаемым в литературе: Xin-dong Mu, Jian-qiang Meng, Zi-Chen Li, и Yuan Коu, Rhodium Nanoparticles Stabilizedby Ionic Copolimers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation (Наночастицы родия, стабилизированные ионными сопролимерами в ионных жидкостях: Нанокластерные катализаторы с продолжительным сроком жизни для гидрогенизации бензола), J. Am. Chem. Soc. 2005, 127, 9694-9695). Жидкости выбираются из группы, состоящей из воды, спиртов, углеводородов, эфиров и ионных жидкостей; предпочтительными являются вода, этанол, циклогексан, 1,4-диоксан или ионная жидкость 1-бутил-3-метилимидазол тетрафторборат (сокращенно [BMIM][BF4]).
Наночастицы переходного металла были хорошо диспергированы после того, как их получили восстановлением металлических предшественников при 100-200°С в атмосфере водорода и при перемешивании. Эти наночастицы могут использоваться непосредственно в качестве катализатора для синтеза Фишера-Тропша, и не требуется дальнейшего процесса диспергации. Основной процесс диспергации в процессе изготовления катализатора - развести металлические предшественники и антикоагулянты в жидкой среде и перемешивать смешанные растворы при 100-200°С в атмосфере водорода.
В другом аспекте настоящее изобретение относится к процессу синтеза Фишера-Тропша с применением предлагаемого нанокатализатора на основе переходного металла, в котором окись углерода и водород вступают в контакт с катализатором и происходит реакция синтеза Фишера-Тропша.
Для реакции синтеза Фишера-Тропша температура реакции равна 100-200°С, предпочтительно 150°С; суммарное давление СО и Н2 равно 0,1-10 МПа, предпочтительно 3 МПа; молярное отношение Н2/СО находится в пределах 0,5-3:1, предпочтительно 0,5, 1,0 или 2,0.
ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг.1 и 2 представлены снимок, полученный с помощью трансмиссионного электронного микроскопа, и распределение частиц предлагаемого рутениевого нанокатализатора по размерам.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Предлагаемый способ приготовления нанокатализатора на основе переходного металла включает этапы смешивания и диспергирования солей переходных металлов и полимерных стабилизаторов в жидкости и последующего восстановления солей переходных металлов водородом при температуре 100-200°С с получением нанокатализатора на основе переходного металла.
В соответствии с данным способом соли переходных металлов выбираются из группы, состоящей из RuCl3·nH2O (где n=0-3, 65), CoCl2·6H2O, NiCl2·6H2O, FеСl3·6Н2O и RhCl3·nH2O (где n=3); в случае выбора сочетания вышеупомянутых солей переходных металлов можно получить сложный нанокатализатор на основе переходного металла. Полимерные стабилизаторы выбираются из поли (N-винил-2-пирролидона) (ПВП) или поли [(N-винил-2-пирролидон)-со-(1-винил-3-алкилимидазолий галоида)] (сокращенно [BVIMPVP], получаемого посредством способа, упоминаемого в литературе: Xin-dong Mu, Jian-qiang Meng, Zi-Chen Li, и Yuan Коu, Rhodium Nanoparticles Stabilizedby Ionic Copolimers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation, J. Am. Chem. Soc. 2005, 127, 9694-9695) (см. выше). Жидкости выбираются из группы, состоящей из воды, спиртов, углеводородов, эфиров, ионных жидкостей и т.п.; предпочтительными являются вода, этанол, циклогексан, 1,4-диоксан или ионическая жидкость [BMIM][BF4] (1-бутил-3-метилимидазол тетрафторборат). Молярное отношение полимерных стабилизаторов к солям переходных металлов равно 400:1-1:1, предпочтительно 200:1-1:1. Концентрации солей переходных металлов, растворенных в жидкости, находятся в пределах 0,0014-0,014 моль/л.
Для реакции восстановления предпочтительным является суммарное давление 0,1-4,0 МПа, более предпочтительным 2 МПа, температура реакции равна 150°С, продолжительность реакции 2 часа.
Реакция синтеза Фишера-Тропша с применением нанокатализатора на основе переходного металла включает в себя этапы введения синтетического газа окиси углерода и водорода при соответствующем давлении в присутствии нанокатализатора на основе переходного металла и проведение реакции при соответствующей температуре в жидкой реакционной среде, в которой равномерно диспергирован катализатор.
Для реакции синтеза Фишера-Тропша температура реакции равна 100-200°С, предпочтительно 150°С; суммарное давление - в пределах 0,1-10 МПа, предпочтительно 3 МПа; молярное отношение водорода к окиси углерода составляет 0,5-3:1, предпочтительно 0,5, 1,0 или 2,0.
При разных условиях реакции суммарный продукт имеет соответствующий состав и содержит главным образом нормальный парафин, небольшие количества разветвленного парафина и α-олефин. Например, типичный состав суммарного продукта следующий: C1 3,4-6,3 весовых %, С2-С4 13,2-18,0 весовых %, C5-C12 53,2-56,9 весовых %, C13-C20 16,9-24,2 весовых % и C21 + 1,5-4,9 весовых %. Следует обратить внимание на то, что нужные продукты С5 + составляют 76,7-83,4 весовых % суммарных продуктов.
Следующие примеры представляют собой типичные способы приготовления нанокатализатора на основе переходного металла и осуществления процесса синтеза Фишера-Тропша с его применением, предлагаемые в настоящем изобретении.
Пример 1
73 мг RuСl3·nН2O и 0,620 г ПВП (ПВП:Ru=20:1, молярное отношение, далее - то же) растворили в 20 мл воды при перемешивании. Затем раствор смеси поместили в автоклав из нержавеющей стали объемом 60 мл и восстанавливали водородом под давлением 20 атм и при температуре 150°С в течение 2 часов, чтобы получить катализатор для синтеза Фишера-Тропша, в котором средний диаметр наночастиц рутения равен 1,8±0,4 нм. Снимок, полученный с помощью трансмиссионного электронного микроскопа, и распределение наночастиц рутения по диаметру показаны соответственно на Фиг.1 и 2.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции синтеза Фишера-Тропша. Окись углерода под давлением 10 атм и водород под давлением 20 атм ввели в автоклав и провели реакцию при температуре 150°С. Результаты реакции приведены в таблице.
Пример 2
73 мг RuCl3·nH2O и 0,106 г ПВП (ПВП:Ru=3,4, молярное отношение) растворили в 20 мл 1,4-диоксана при перемешивании. Затем раствор смеси поместили в автоклав из нержавеющей стали объемом 60 мл, и восстанавливали водородом под давлением 20 атм при температуре 150°С в течение 2 часов, чтобы получить катализатор для синтеза Фишера-Тропша.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции Фишера-Тропша синтеза. Окись углерода под давлением 10 атм и водород под давлением 20 атм ввели в автоклав и провели реакцию при температуре 150°С. Результаты реакции приведены в таблице.
Пример 3
73 мг RuСl3·nН2O и 0,106 г ПВП (ПВП:Ru=3,4, молярное отношение) растворили в 20 мл этанола при перемешивании. Затем раствор смеси поместили в автоклав из нержавеющей стали объемом 60 мл и восстанавливали водородом под давлением 20 атм при температуре 150°С в течение 2 часов, чтобы получить катализатор для синтеза Фишера-Тропша.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции синтеза Фишера-Тропша. Окись углерода под давлением 10 атм и водород под давлением 20 атм ввели в автоклав и провели реакцию при температуре 150°С. Результаты реакции приведены в таблице.
Пример 4
73 мг RuСl3·nН2O и 1,4 ммоль раствора в метаноле поли [(N-винил-2-пирролидон)-со-(1-винил-3-алкилимидазолий галоида)] (сокращенно[BVIMPVP]Cl, средний молекулярный вес мономера 126), растворили в 10 мл ионной жидкости [BMIM] [BF4] при перемешивании. Раствор смеси нагревали в вакууме при температуре 60°С в течение 1 часа для удаления метанола, затем восстанавливали H2 под давлением 20 атм при температуре 150°С в течение 2 часов в автоклаве объемом 60 мл, чтобы получить катализатор для синтеза Фишера-Тропша.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции синтеза Фишера-Тропша. Окись углерода под давлением 10 атм и водород под давлением 20 атм ввели в автоклав и провели реакцию при температуре 150°С. Результаты реакции приведены в таблице.
Пример 5
73 мг RuСl3·nН2O и 0,620 г ПВП (ПВП:Ru=20, молярное отношение) растворили в 20 мл воды при перемешивании. Затем раствор смеси поместили в автоклав из нержавеющей стали объемом 60 мл и восстанавливали водородом под давлением 20 атм при температуре 150°С в течение 2 часов, чтобы получить катализатор для синтеза Фишера-Тропша.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции синтеза Фишера-Тропша. Окись углерода под давлением 10 атм и водород под давлением 5 атм ввели в автоклав и провели реакцию при температуре 150°С. Результаты реакции приведены в таблице.
Пример 6
73 мг RuСl3·nН2O и 0,620 г ПВП (ПВП:Ru=20, молярное отношение) растворили в 20 мл воды при перемешивании. Затем раствор смеси поместили в автоклав из нержавеющей стали объемом 60 мл и востанавливали водородом под давлением 20 атм при температуре 150°С в течение 2 часов, чтобы получить катализатор для синтеза Фишера-Тропша.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции синтеза Фишера-Тропша. Окись углерода под давлением 10 атм и водород под давлением 20 атм ввели в автоклав и провели реакцию при температуре 150°С. Результаты реакции приведены в таблице.
Пример 7
73 мг RuСl3·nН2O и 0,062 г ПВП (ПВП:Ru=20, молярное отношение) растворили в 20 мл воды при перемешивании. Затем раствор смеси поместили в автоклав из нержавеющей стали объемом 60 мл и восстанавливали водородом под давлением 20 атм при температуре 150°С в течение 2 часов, чтобы получить катализатор для синтеза Фишера-Тропша.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции синтеза Фишера-Тропша. Окись углерода под давлением 10 атм и водород под давлением 20 атм ввели в автоклав и провели реакцию при температуре 150°С. Результаты реакции приведены в таблице.
Пример 8
73 мг RuСl3·nН2O и 6,20 г ПВП (ПВП:Ru=200, молярное отношение) растворили в 20 мл воды при перемешивании. Затем раствор смеси поместили в автоклав из нержавеющей стали объемом 60 мл и восстанавливали водородом под давлением 20 атм при температуре 150°С в течение 2 часов, чтобы получить катализатор для синтеза Фишера-Тропша.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции синтеза Фишера-Тропша. Окись углерода под давлением 10 атм и водород под давлением 20 атм ввели в автоклав и провели реакцию при температуре 150°С. Результаты реакции приведены в таблице.
Пример 9
119 мг CoCl2·6H2O и 2,25 г ПВП (ПВП:Со=40, молярное отношение) растворили в 50 мл воды при перемешивании. Затем раствор смеси поместили в автоклав из нержавеющей стали объемом 100 мл и восстанавливали водородом под давлением 40 атм при температуре 170°С в течение 2 часов, чтобы получить катализатор для синтеза Фишера-Тропша.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции синтеза Фишера-Тропша. Окись углерода под давлением 10 атм и водород под давлением 20 атм ввели в автоклав и провели реакцию при температуре 170°С. Результаты реакции приведены в таблице.
Пример 10
136 мг FеСl3·6Н2O и 5,63 г ПВП (ПВП:Со=100, молярное отношение) растворили в 50 мл воды при перемешивании. Затем раствор смеси поместили в автоклав из нержавеющей стали объемом 100 мл и восстанавливали водородом под давлением 40 атм при температуре 200°С в течение 2 часов, чтобы получить катализатор для синтеза Фишера-Тропша.
После охлаждения до комнатной температуры и выделения остаточного газа катализатор можно использовать для реакции синтеза Фишера-Тропша. Окись углерода под давлением 20 атм и водород под давлением 40 атм ввели в автоклав и провели реакцию при температуре 200°С. Результаты реакции приведены в таблице.
В таблице снижение суммарного давления в течение времени реакции определяется как изменения суммарного давления после реакции при комнатной температуре; частота оборота определяется как моли преобразуемой окиси углерода на моль металлического катализатора за час во время реакции.
Результаты свидетельствуют о том, что предлагаемый нанокатализатор на основе переходного металла имеет превосходную каталитическую активность при температуре 100-150°С. Температура реакции значительно ниже, чем при использовании промышленных катализаторов Фишера-Тропша (200-350°С), а используемое содержание С5 + доходит до 76,7-83,4 весовых % от общего продукта. Результаты показывают прекрасные перспективы для промышленного применения нанокатализатора на основе переходного металла.
ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ
Согласно настоящему изобретению, получают нанокатализатор на основе переходного металла. Катализатор содержит наномерные частицы металла (1-10 нм), которые могут быть равномерно диспергированы в жидкости с образованием стабильных коллоидов, а коллоиды не агрегируются перед реакцией и после нее. Катализатор может свободно вращаться в трехмерном пространстве в условиях реакции синтеза Фишера-Тропша и обладает превосходной каталитической активностью при низкой температуре 100-200°С. Такие условия реакции намного мягче, чем типичная температура реакции синтеза Фишера-Тропша (200-350°С), используемая в промышленности в настоящее время. Кроме того, наночастицы переходного металла имеют меньший размер и более узкое распределение по диаметру, чем известные катализаторы, что благотворно влияет на регулирование распределения продукта. При этом катализатор можно легко отелить от углеводородных продуктов и использовать повторно. Все вышеупомянутые достоинства предполагают широкие перспективы применения предлагаемого нанокатализатора на основе переходного металла.
название | год | авторы | номер документа |
---|---|---|---|
Катализатор и способ осуществления реакции Фишера-Тропша с его использованием | 2015 |
|
RU2614420C1 |
НАНОКАТАЛИЗАТОР ИЗ МОНОДИСПЕРСНОГО ПЕРЕХОДНОГО МЕТАЛЛА ДЛЯ СИНТЕЗА ФИШЕРА-ТРОПША, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ | 2016 |
|
RU2675839C1 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ УГЛЕВОДОРОДОВ АЛИФАТИЧЕСКОГО РЯДА ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ | 2013 |
|
RU2537850C1 |
Способ получения катализатора и способ гидрогенизационной конверсии диоксида углерода в жидкие углеводороды с его использованием | 2016 |
|
RU2622293C1 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ | 2012 |
|
RU2492923C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО КАТАЛИЗАТОРА СИНТЕЗА ФИШЕРА-ТРОПША И СПОСОБ СИНТЕЗА ФИШЕРА-ТРОПША С ЕГО ПРИМЕНЕНИЕМ | 2016 |
|
RU2641299C1 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ | 2011 |
|
RU2466790C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА СИНТЕЗА УГЛЕВОДОРОДОВ И ЕГО ПРИМЕНЕНИЕ В ПРОЦЕССЕ СИНТЕЗА УГЛЕВОДОРОДОВ | 2009 |
|
RU2502559C2 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ | 2010 |
|
RU2443471C2 |
СПОСОБ ПОЛУЧЕНИЯ НОСИТЕЛЯ ДЛЯ КАТАЛИЗАТОРА С ПОВЫШЕННОЙ ГИДРОТЕРМАЛЬНОЙ СТАБИЛЬНОСТЬЮ (ВАРИАНТЫ), КАТАЛИЗАТОР ДЛЯ СИНТЕЗА УГЛЕВОДОРОДОВ И СПОСОБ СИНТЕЗА УГЛЕВОДОРОДОВ ИЗ СИНТЕЗ-ГАЗА | 2003 |
|
RU2340394C2 |
Изобретение относится к катализаторам синтеза Фишера-Тропша. Описан нанокатализатор на основе переходного металла для синтеза Фишера-Тропша, содержащий наночастицы переходного металла и полимерные стабилизаторы, причем переходный металл выбран из группы, состоящей из рутения, кобальта, никеля, железа и родия или любой их комбинации, в котором наночастицы переходного металла диспергируются в жидкости и размер наночастиц переходного металла составляет 1-10 нм. Описан способ приготовления описанного выше нанокатализатора, состоящий их следующих этапов: смешивание и диспергирование солей переходных металлов и полимерных стабилизаторов в жидкостях и восстановление солей переходных металлов водородом, чтобы получить нанокатализатор на основе переходного металла, причем температура равна 100-200°С, а концентрация солей переходных металлов, растворенных в жидкостях, составляет 0.0014-0.014 моль/л. Описан процесс синтеза Фишера-Тропша, который проводят с применением описанного выше нанокатализатора для конвертации окиси углерода и водорода в углеводороды. Технический результат - получен активный нанокатализатор процесса синтеза Фишера-Тропша. 3 н. и 14 з.п. ф-лы; 1 табл., 2 ил.
1. Нанокатализатор на основе переходного металла для синтеза Фишера-Тропша, содержащий наночастицы переходного металла и полимерные стабилизаторы, причем переходный металл выбран из группы, состоящей из рутения, кобальта, никеля, железа и родия или любой их комбинации, в котором наночастицы переходного металла диспергируются в жидкости и размер наночастиц переходного металла составляет 1-10 нм.
2. Нанокатализатор на основе переходного металла по п.1, отличающийся тем, что размер наночастиц переходного металла составляет (1.8±0.4) нм.
3. Нанокатализатор на основе переходного металла по п.2, отличающийся тем, что переходный металл выбирается из группы, состоящей из рутения, кобальта, никеля, железа и родия или любого их сочетания; полимерные стабилизаторы выбраны из поли(N-винил-2-пирролидона) или поли[(N-винил-2-пирролидон)-со-(1-винил-3-алкилимидазолий галоида)], а жидкость выбрана из группы, состоящей из воды, спиртов, углеводородов, эфиров и ионных жидкостей.
4. Нанокатализатор на основе переходного металла по п.3, отличающийся тем, что жидкость выбрана из воды, этанола, циклогексана, 1,4-диоксана или ионной жидкости [BMIM] [BF4].
5. Нанокатализатор на основе переходного металла по любому из пп.1-4, отличающийся тем, что его приготавливают согласно способу, содержащему следующие этапы: смешивание и диспергирование солей переходных металлов и полимерных стабилизаторов в жидкостях и восстановление солей переходных металлов водородом при температуре 100-200°С, чтобы получить нанокатализатор на основе переходного металла.
6. Нанокатализатор на основе переходного металла по п.5, отличающийся тем, что соли переходных металлов выбираются из группы, состоящей из СоСl2·6Н2О, NiCl2·6H2O, FеСl3·6Н2О или любого их сочетания.
7. Нанокатализатор на основе переходного металла по п.6, отличающийся тем, что давление водорода равно 0,1-4 МПа, продолжительность реакции составляет 2 ч, молярное отношение полимерных стабилизаторов к солям переходных металлов находится в пределах 400:1-1:1 и/или концентрация солей переходных металлов, растворенных в жидкостях, составляют 0.0014-0.014 моль/л для реакции восстановления.
8. Нанокатализатор на основе переходного металла по п.7, отличающийся тем, что молярное отношение полимерных стабилизаторов к солям переходных металлов находится в пределах 200:1-1:1.
9. Способ приготовления нанокатализатора на основе переходного металла по любому из пп.1-8, состоящий их следующих этапов: смешивание и диспергирование солей переходных металлов и полимерных стабилизаторов в жидкостях и восстановление солей переходных металлов водородом, чтобы получить нанокатализатор на основе переходного металла, причем температура реакции восстановления равна 100-200°С, а концентрация солей переходных металлов, растворенных в жидкостях, составляет 0,0014-0,014 моль/л.
10. Способ приготовления нанокатализатора на основе переходного металла по п.9, отличающийся тем, что молярное отношение полимерных стабилизаторов к солям переходных металлов находится в пределах 400:1-1:1, давление водорода равно 0,1-4 МПа, а продолжительность реакции составляет 2 ч.
11. Способ по п.10, отличающийся тем, что молярное отношение полимерных стабилизаторов к солям переходных металлов находится в пределах 200:1-1:1.
12. Способ приготовления нанокатализатора на основе переходного металла по любому из пп.9-11, отличающийся тем, что соли переходных металлов выбирают из группы, состоящей из CoCl2·6H2O, NiCl2·6H2O, FеСl3·6Н2О или любого их сочетания; полимерные стабилизаторы выбирают из поли(N-Винил-2-пирролидона) или поли[(N-Винил-2-пирролидон)-со-(1-Винил-3-алкилимидазолий галоида)]; а жидкости выбирают из группы, состоящей из воды, спиртов, углеводородов, эфиров и ионных жидкостей.
13. Способ по п.12, отличающийся тем, что жидкость выбирается из воды, этанола, циклогексана, 1,4-диогексана или ионной жидкости [BMIM][BF4].
14. Процесс синтеза Фишера-Тропша, отличающийся тем, что реакцию синтеза проводят с применением нанокатализатора на основе переходного металла по любому из пп.1-8 для конвертации окиси углерода и водорода в углеводороды.
15. Процесс синтеза Фишера-Тропша по 14, отличающийся тем, что температура реакции равна 100-200°С.
16. Процесс синтеза Фишера-Тропша по п.14, отличающийся тем, что суммарное давление окиси углерода и водорода во время реакции составляет 0,1-10 МПа и/или молярное отношение водорода к окиси углерода во время реакции составляет 0,5-3:1.
17. Процесс синтеза Фишера-Тропша по п.15 или 16, отличающийся тем, что температура реакции синтеза равна 100°С или 150°С, суммарное давление окиси углерода и водорода во время реакции составляет 3 МПа и/или молярное отношение водорода к окиси углерода составляет 0,5; 1,0 или 2,0.
CN 1903427 А, 31.01.2007 | |||
Устройство для защиты контактной сети железных дорог,электрифицированных по системе 2х25 кв | 1985 |
|
SU1237494A1 |
КОЛЛОИДНЫЙ РАСТВОР НАНОЧАСТИЦ МЕТАЛЛА, НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛИМЕР И СПОСОБЫ ИХ ПОЛУЧЕНИЯ | 2002 |
|
RU2259871C2 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ И ИХ КИСЛОРОДСОДЕРЖАЩИХ ПРОИЗВОДНЫХ ИЗ СИНТЕЗ-ГАЗА | 2001 |
|
RU2210432C1 |
US 6929675 B1, 16.08.2005 | |||
US 5147841 A, 15.09.1992. |
Авторы
Даты
2011-10-10—Публикация
2008-04-30—Подача