СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ Российский патент 2012 года по МПК C23C30/00 C23C14/48 C23C28/00 

Описание патента на изобретение RU2441104C2

Изобретение относится к области машиностроения, а именно к методам нанесения жаростойких покрытий на лопатки энергетических и транспортных турбин, в особенности газовых турбин авиадвигателей.

Газотурбинные установки и двигатели находят все более широкое применение в современной технике: двигатели самолетов и вертолетов, судовые газотурбинные двигатели, энергетические ГТУ и газоперекачивающие агрегаты. К основным деталям, определяющим надежность, экономичность и ресурс их работы, относятся рабочие лопатки турбины. Длительная эксплуатация лопаточного аппарата турбины возможна лишь при условии изготовления рабочих лопаток из жаропрочных сплавов на никелевой или кобальтовой основе. В процессе эксплуатации лопатки подвергаются воздействию повышенных механических нагрузок, высоких температур и агрессивных сред. Результатом такого комплексного воздействия на деталь является ее быстрый выход из строя, что не обеспечивает требуемого ресурса изделия в целом. Для решения проблемы повышения работоспособности лопаток турбины используются различные эффективные защитные покрытия [1. Химико-термическая обработка жаропрочных сталей и сплавов / Н.В.Абраимов, Ю.С.Елисеев. - М.: Интермет Инжиниринг, 2001. - 622 с.]. Применяемые для защиты лопаток жаростойкие покрытия, при их достаточной стабильности в условиях эксплуатации, могут ощутимо снизить процессы разрушения основного материала детали и обеспечить ее работоспособность в условиях высоких температур.

Наиболее перспективными материалами, используемыми для формирования жаростойких покрытий, являются сплавы систем: Me-Cr-Al-Y, где Me - Ni, Co или их сочетание, а также сплавы, сочетающие Ni, Cr, Al, Si, Y, B. [2. Мубаяджан С.А.]. Применяются как однослойные [3. Патент США №4475503], так и двухслойные покрытия, например, с внешним слоем на основе алюминидов никеля [4. Патент США №4080486].

Известен способ подготовки поверхности детали под нанесение многослойного покрытия на металлические изделия методом катодного распыления, включающий ионную очистку и/или модификацию поверхности изделия [5. Патент РФ №2228387. МПК С23С 14/06. Способ нанесения многослойного покрытия на металлические изделия. Опубл. 2004 г.]. Однако функциональным назначением ионно-имплантационной обработки поверхности в известном случае не является повышение жаростойкости покрытия.

Известен способ нанесения покрытия, при котором в вакууме наносят покрытие состава NiCrAlY, после чего проводят алитирование нанесенного покрытия [6. П.Т.Коломыцев. Высокотемпературные защитные покрытия для никелевых сплавов. - М.: Машиностроение, 1991, с.146; Лахтин Ю.М., Арзамасов Б.Н. Химико-термическая обработка металлов. - М.: Металлургия, 1985, с 253-254].

Известен способ нанесения покрытия в вакууме, при котором в качестве материала покрытия используют состав NiCrAlY [7. Мубояджян С.А., Каблов Е.Н., Будиновский С.А. Вакуумно-плазменная технология получения защитных покрытий из сложнолегированных сплавов, МиТОМ. 1995, №2, с.15-18].

Известен также способ получения жаростойкого покрытия, преимущественно для рабочих лопаток турбин газотурбинных двигателей и энергетических установок, включающий подготовку поверхности лопатки, формирование внутреннего жаростойкого слоя и нанесение на него внешнего жаростойкого слоя [8. Патент РФ №1658652, МПК С23С 14/00. Способ получения комбинированного жаростойкого покрытия. Опубл. 2000 г.]. Известный способ получения комбинированного жаростойкого покрытия предусматривает осаждение в вакууме внутреннего слоя покрытия из сплава на основе никеля, содержащего кобальт, хром, алюминий и редкоземельный элемент, последующее осаждение внешнего слоя покрытия из сплава на основе алюминия, содержащего в качестве легирующей добавки никель, при содержании в каждом из слоев алюминия в количестве 20-80 г/м2 и толщине внутреннего слоя покрытия 30-100 мкм и последующий вакуумный отжиг.

Недостатком известных способов нанесения жаростойких покрытий является интенсивный диффузионный обмен между слоем MeCrAlY и основным материалом детали, приводящий к снижению эксплуатационных свойств лопаток турбин ГТД и ГТУ.

Наиболее близким по технической сущности является способ получения жаростойкого покрытия на рабочих лопатках турбин газотурбинных двигателей или энергетических установок, включающий ионно-имплантационную обработку поверхности лопатки, формирование внутреннего жаростойкого слоя и нанесение внешнего жаростойкого слоя из сплава Al-Si-Y с его ионной имплантацией (патент РФ №2264480, МПК С23С 14/06, С23С 14/34, С23С 14/48, С23С 14/58. Способ нанесения защитных покрытий на детали из жаропрочных сплавов. Опубл. 20.11 2005, Бюл. №32). Известный способ включает также следующие операции: очистка поверхности детали; модификация поверхности детали; нанесение конденсационного покрытия многокомпонентного сплава; образование переходных микрослоев путем ионной имплантации; нанесение интерметаллидных микрослоев путем диффузионной металлизации или ионно-плазменного напыления и отжига; образование переходных слоев путем ионного перемешивания; нанесение оксидных слоев путем контролируемого отжига, шликерным методом или электронно-лучевым напылением; модификация наружной поверхности покрытия имплантацией; дополнительная обработка покрытия.

Основным недостатком прототипа является низкая жаростойкость и недостаточная выносливость и циклическая прочность, т.е. параметры, которые необходимо обеспечивать при эксплуатации лопаток газотурбинных двигателей и установок.

Техническим результатом заявляемого способа является повышение жаростойкости покрытия при одновременном повышении выносливости и циклической прочности деталей с защитными покрытиями.

Технический результат достигается тем, что в способе получения жаростойкого покрытия на рабочих лопатках турбин газотурбинных двигателей или энергетических установок, включающем ионно-имплантационную обработку поверхности лопатки, формирование внутреннего жаростойкого слоя и нанесение внешнего жаростойкого слоя из сплава Al-Si-Y с его ионной имплантацией, в отличие от прототипа ионно-имплантационную обработку поверхности лопатки производят ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, в качестве материала для формирования внутреннего жаростойкого слоя используют сплав состава: Cr - 18% до 30%, Al - 5% до 13%, Y - от 0,2% до 0,65%, Ni - остальное, а в качестве материала для формирования внешнего жаростойкого слоя используют сплав состава: Si - от 4,0% до 12, 0%; Y - от 1,0 до 2,0%; Al - остальное, причем нанесение внешнего жаростойкого слоя чередуют с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, с формированием внешнего жаростойкого слоя в виде микрослоев, разделенных имплантированными микро- или нанослоями.

Технический результат достигается также тем, что в способе получения жаростойкого покрытия нанесение внутреннего жаростойкого слоя чередуют с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si с формированием внутреннего жаростойкого слоя в виде микрослоев, разделенных имплантированными микро- или нанослоями, причем внутренний жаростойкий слой формируют толщиной от 2 мкм до 10 мкм и с количеством микро- или нанослоев, составляющем от 3 до 200.

Технический результат достигается также тем, что в способе получения жаростойкого покрытия перед нанесением внутреннего жаростойкого слоя на поверхность лопатки дополнительно наносят слой одного или нескольких металлов Nb, Pt, Cr толщиной от 0,1 мкм до 2,0 мкм.

Технический результат достигается также тем, что в способе получения жаростойкого покрытия внешний жаростойкий слой формируют толщиной от 10 мкм до 60 мкм и с количеством микро- или нанослоев, составляющем от 3 до 1000.

Технический результат достигается также тем, что в способе получения жаростойкого покрытия перед нанесением внешнего жаростойкого слоя на поверхность внутреннего жаростойкого слоя наносят переходный слой одного или нескольких металлов Nb, Pt, Cr толщиной от 0,1 мкм до 2,0 мкм.

Технический результат достигается также тем, что в способе получения жаростойкого покрытия нанесение слоев покрытия осуществляют шликерным, или газотермическим, или магнетронными методами или электронно-лучевым испарением и конденсацией в вакууме.

Технический результат достигается также тем, что в способе получения жаростойкого покрытия ионную имплантацию проводят при энергии ионов от 0,2 кэВ до 30 кэВ и дозе имплантации ионов от 1010 до 5·1020 ион/см2, а после нанесения покрытия производят его диффузионный отжиг.

Для оценки стойкости лопаток газовых турбин с жаростойкими покрытиями, полученными по известному и предлагаемому способам, были проведены следующие испытания. Режимы и условия нанесения покрытий на образцы из кобальтовых и никелевых сплавов (ЦНК-7, ЦНК-21, FSX-414, ЖС-6, ЖС-6У, ЭИ-893, U-5000) приведены в таблице 1.

Табл.1 № группы образцов Ионы, имплантируемые в основу Ионы, имплантируемые в покрытие Внутренний слой Внешний слой Дополнительный слой на поверхности лопатки Дополнительный слой на внутреннем слое 1 2 3 4 5 6 7 (Прот) - - Co - 20% Si - 12% - - Cr - 30% Ni - 10% Al - 13% В - 1,6% Y - 0,6% Al - ост. Ni - ост. 1 Nb Y+Pt Cr - 18% Si - 4,0% Nb, толщ. 0,1 мкм Nb, толщ. 0,1 мкм 2 Yb Y+Cr Al - 5% Y - 1,0% 3 Yb+Nb Y+Cr Y - 0,2% Al - ост. Pt, толщ. 0,1 мкм 4 Pt Nb Ni - ост. 5 Y Nb Cr - 30%, Si-12,0% Nb+Pt, толщ. 0,5 мкм Nb, толщ. 2,0 мкм 6 Y+Pt Yb Al - 13%, Y - 2,0% Y - 0,65%, Al - ост. 7 Y+Cr Yb Ni - ост. Nb, толщ. 2,0 мкм Cr, толщ. 0,1 мкм 8 Y+Cr Pt 9 Hf+Nb Y Cr - 22% Si - 6,0% Pt, толщ. 0,1 мкм Pt+Cr, толщ. 2,0 мкм 10 La+Nb+Y Cr+Si Al - 11%, Y - 1,5% Y- 0,5%, Al - ост. 11 Yb+Nb Yb+Nb Ni - ост. Cr, толщ. 0,1 мкм Nb+Cr, толщ. 2,0 мкм 12 Si+Cr Hf+Nb 13 Y Y Cr - 24% Si- 8,0% Pt+Cr, толщ. 2,0 мкм Pt, толщ. 2,0 мкм 14 Pt Nb Al - 8%, Y - 1,0% Y - 0,4% Al - ост. 15 Cr+Si Pt Ni - ост. Pt, толщ Nb+Pt, толщ. 16 Nb Cr+Si 2,0 мкм 0,5 мкм 17 La Hf Cr - 26% Si - 10% Cr, толщ. 2,0 мкм Pt, толщ. 0,1 мкм 18 La La Al - 10%, Y - 2,0% Y - 0,3%, Al - ост. 19 Yb+Nb Yb Ni - ост. Nb+Cr, толщ. 2,0 мкм Сг, толщ. 2,0 мкм 20 Yb Yb

Режимы обработки образцов и нанесения покрытия: ионная имплантация (Nb, Pt, Yb, Y, La, Hf, Cr, Si или их сочетанием) при энергии ионов от 0,2 кэВ до 30 кэВ и дозе имплантации ионов от 1010 до 5·1020 ион/см2 (диффузионный отжиг в вакууме при температуре 400°С в течение 1 ч). Материал слоев и схема их чередования - согласно таблицы 1. Толщины слоев составляли: по известному способу внутренний слой -толщиной 40 мкм и 80 мкм, внешний слой - 80 мкм и 40 мкм. При формировании по предлагаемому способу толщина внутреннего жаростойкого слоя составляла от 2 мкм до 10 мкм, а количество микро- или нанослоев в жаростойком слое составляло от 3 до 200; толщина внешнего жаростойкого слоя составляла от 10 мкм до 60 мкм, а количество микро- или нанослоев - от 3 до 1000.

Были также проведены испытания на выносливость и циклическую прочность образцов из никелевых и кобальтовых сплавов ЦНК-7, ЦНК-21, FSX-414, ЖС-6, ЖС-6У, ЭИ-893, U-5000 в условиях высоких температур (при 870-950°С) на воздухе. В результате проведенных испытаний было установлено следующее: условный предел выносливости (σ-1) лопаток составляет:

1) по известному способу - никелевые сплавы в среднем 230-250 МПа, кобальтовые- 220-235 МПа;

2) по предлагаемому способу - никелевые сплавы в среднем 260-290 МПа, кобальтовые - 250-275МПа (таблица 2).

Табл.2
группы образцов
Никелевые сплавы, МПа Кобальтовые сплавы, МПа
1 2 3 1 260-285 240-255 2 265-290 250-265 3 265-290 250-270 4 270-300 240-265 5 280-295 250-275 6 275-290 245-270 7 260-290 250-275 8 270-300 250-265 9 280-295 240-250 10 275-290 250-280 11 275-290 245-275 12 280-300 245-270 13 270-295 250-275 14 275-290 250-265 15 265-290 250-270 16 280-300 240-275 17 280-295 250-275 18 270-280 245-270 19 265-280 250-275 20 280-300 240-255

Изотермическая жаростойкость покрытий оценивалась на образцах диаметром d=10 мм и длиной l=30 мм. Образцы покрытиями помещались в тигли и выдерживались на воздухе при температуре Т=1200°С. Жаростойкость покрытий оценивалась по характерному времени (τ) до появления первых очагов газовой коррозии или других дефектов, которые определялись путем визуального осмотра через каждые 50 часов испытаний при температуре 1200°С. Взвешивание образцов вместе с окалиной производилось через 500 и 1000 ч испытаний, при этом определялась величина удельного прироста массы образца на единицу его поверхности по сравнению с исходным весом ΔР, г/м2. Полученные результаты представлены в таблице 3.

Табл.3 № группы образцов Циклическая жаростойкость, цикл. Изотермическая жаростойкость τ, ч ΔР, г/м2 500 ч 1000 ч 1 2 3 4 5 0 550 350 7,4 13,1 1 750 650 6,1 10,4 2 700 600 5,8 9,8 3 800 700 6,3 10,1 4 900 750 4,4 8,8 5 850 700 5,9 9,1 6 900 850 3,6 7,9 7 950 850 3,4 7,8 8 700 600 6,2 9,9 9 900 850 4,1 8,7 10 800 700 5,7 10,2 11 900 800 4,5 8,8 12 750 650 5,6 9,7 13 750 600 5,8 10,1 14 900 800 4,3 9,9 15 850 750 4,9 9,4 16 900 850 4,4 8,8 17 800 700 5,1 8,9 18 800 650 5,4 8,7 19 850 700 5,3 9,3 20 800 700 5,7 9,9

Повышение жаростойкости покрытий и предела выносливости лопаток из никелевых и кобальтовых сплавов с покрытиями (таблицы 2 и 3) указывает на то, что при применении следующих вариантов нанесения жаростойкого покрытия на лопатки турбин газотурбинных двигателей или энергетических установок: ионно-плазменная подготовка поверхности лопатки под нанесение покрытия; ионно-имплантационная обработка поверхности лопатки ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si; формирование внутреннего жаростойкого слоя состава: Cr - 18% до 30%, Al - 5% до 13%, Y - от 0,2% до 0,65%, Ni -остальное; нанесение на него внешнего жаростойкого слоя сплав состава: Si - от 4,0% до 12, 0%; Y - от 1,0 до 2,0%; Al - остальное, при чередовании нанесения указанного сплава с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, с формированием внешнего жаростойкого слоя в виде микрослоев, разделенных имплантированными микро- или нанослоями; чередование нанесения внутреннего жаростойкого слоя с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, с формированием внутреннего жаростойкого слоя в виде микрослоев, разделенных имплантированными микро- или нанослоями; дополнительно нанесение слоя одного или нескольких металлов Nb, Pt, Cr толщиной от 0,1 мкм до 2,0 мкм перед нанесением внутреннего жаростойкого слоя на поверхность лопатки; формирование внутреннего жаростойкого слоя толщиной от 2 мкм до 10 мкм и с количеством микро- или нанослоев, составляющем от 3 до 200; формирование внешнего жаростойкого слоя толщиной от 10 мкм до 60 мкм и с количеством микро- или нанослоев, составляющем от 3 до 1000; нанесение переходного слоя одного или нескольких металлов Nb, Pt, Cr или их сочетания толщиной от 0,1 мкм до 2,0 мкм, перед нанесением внешнего жаростойкого слоя на поверхность внутреннего жаростойкого слоя; осуществление нанесения слоев покрытия шликерным, или газотермическим, или магнетронными методами или электронно-лучевым испарением и конденсацией в вакууме; проведение ионной имплантации при энергии ионов от 0,2 кэВ до 30 кэВ и дозе имплантации ионов от 1010 до 5·1020 ион/см2 как при обработке поверхности основного материала детали, так и при формировании внешнего жаростойкого и внутреннего жаростойкого слоев покрытия; проведение диффузионного отжига после нанесения покрытия - позволяют достичь технического результата заявляемого изобретения - является повышение жаростойкости покрытия при одновременном повышении выносливости и циклической прочности деталей с защитными покрытиями.

Похожие патенты RU2441104C2

название год авторы номер документа
СПОСОБ ВОССТАНОВЛЕНИЯ БЛОКА СОПЛОВЫХ ЛОПАТОК ТУРБОМАШИН ИЗ НИКЕЛЕВЫХ И КОБАЛЬТОВЫХ СПЛАВОВ 2009
  • Новиков Антон Владимирович
  • Мингажев Аскар Джамилевич
  • Смыслова Марина Константиновна
  • Кишалов Евгений Александрович
RU2426632C1
СПОСОБ ПОЛУЧЕНИЯ АРМИРОВАННОГО ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ 2009
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Мингажев Аскар Джамилевич
  • Петухов Игорь Геннадиевич
  • Быбин Андрей Александрович
  • Седов Виктор Викторович
  • Новиков Антон Владимирович
  • Селиванов Константин Сергеевич
  • Павлинич Сергей Петрович
RU2447195C2
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ 2009
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Мингажев Аскар Джамилевич
  • Дыбленко Юрий Михайлович
  • Быбин Андрей Александрович
  • Новиков Антон Владимирович
  • Петухов Игорь Геннадиевич
RU2441103C2
СПОСОБ ФОРМИРОВАНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ЛОПАТКЕ ТУРБИНЫ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2009
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Мингажев Аскар Джамилевич
  • Дыбленко Юрий Михайлович
  • Быбин Андрей Александрович
  • Новиков Антон Владимирович
  • Павлинич Сергей Петрович
RU2426817C2
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ТУРБИН ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ И ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 2010
  • Мингажев Аскар Джамилевич
  • Быбин Андрей Александрович
  • Новиков Антон Владимирович
  • Смыслова Марина Константиновна
RU2435872C2
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ТУРБОМАШИН 2010
  • Мингажев Аскар Джамилевич
  • Быбин Андрей Александрович
  • Смыслова Марина Константиновна
  • Новиков Антон Владимирович
RU2441102C2
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ГАЗОВЫХ ТУРБИН 2010
  • Мингажев Аскар Джамилевич
  • Быбин Андрей Александрович
  • Смыслова Марина Константиновна
  • Новиков Антон Владимирович
RU2441101C2
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ 2010
  • Смыслов Анатолий Михайлович
  • Мингажев Аскар Джамилевич
  • Смыслова Марина Константиновна
  • Равилов Ренат Галимзянович
  • Дыбленко Юрий Михайлович
  • Быбин Андрей Александрович
  • Даутов Сагит Хамитович
  • Измайлова Наиля Федоровна
  • Новиков Игорь Николаевич
RU2479669C2
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ГАЗОВЫХ ТУРБИН 2010
  • Мингажев Аскар Джамилевич
  • Быбин Андрей Александрович
  • Новиков Антон Владимирович
  • Смыслова Марина Константиновна
RU2441100C2
СПОСОБ УПРОЧНЕНИЯ БЛОКА СОПЛОВЫХ ЛОПАТОК ТУРБОМАШИН ИЗ НИКЕЛЕВЫХ И КОБАЛЬТОВЫХ СПЛАВОВ 2010
  • Новиков Антон Владимирович
  • Мингажев Аскар Джамилевич
  • Кишалов Евгений Александрович
RU2445199C2

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ

Изобретение относится к области машиностроения, а именно к методам нанесения защитных покрытий на лопатки энергетических и транспортных турбин, в частности газовых турбин авиадвигателей. Технический результат - повышение жаростойкости покрытия при одновременном повышении его выносливости и циклической прочности деталей с покрытием. Способ включает ионно-имплантационную обработку поверхности лопатки, формирование внутреннего жаростойкого слоя и нанесение внешнего жаростойкого слоя с его ионной имплантацией. Ионно-имплатационную обработку поверхности лопатки производят ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si. При этом в качестве материала для формирования внутреннего жаростойкого слоя используют сплав состава: Cr - 18% до 30%, Al - 5% до 13%, Y - от 0,2% до 0,65%, Ni - остальное. В качестве материала для формирования внешнего жаростойкого слоя используют сплав состава: Si - от 4,0% до 12,0%; Y - от 1,0 до 2,0%; Al - остальное. Причем нанесение внешнего жаростойкого слоя чередуют с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, с формированием внешнего жаростойкого слоя в виде микрослоев, разделенных имплантированными микро- или нанослоями. 24 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 441 104 C2

1. Способ получения жаростойкого покрытия на рабочих лопатках турбин газотурбинных двигателей или энергетических установок, включающий ионно-имплантационную обработку поверхности лопатки, формирование внутреннего жаростойкого слоя и нанесение внешнего жаростойкого слоя из сплава Al-Si-Y с его ионной имплантацией, отличающийся тем, что ионно-имплантационную обработку поверхности лопатки производят ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, в качестве материала для формирования внутреннего жаростойкого слоя используют сплав состава: Cr - от 18% до 30%, Al - от 5% до 13%, Y - от 0,2% до 0,65%, Ni - остальное, а в качестве материала для формирования внешнего жаростойкого слоя используют сплав состава: Si - от 4,0% до 12,0%; Y - от 1,0% до 2,0%; Al - остальное, причем нанесение внешнего жаростойкого слоя чередуют с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si с формированием внешнего жаростойкого слоя в виде микрослоев, разделенных имплантированными микро- или нанослоями.

2. Способ по п.1, отличающийся тем, что нанесение внутреннего жаростойкого слоя чередуют с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si с формированием внутреннего жаростойкого слоя в виде микрослоев, разделенных имплантированными микро- или нанослоями.

3. Способ по п.1, отличающийся тем, что перед нанесением внутреннего жаростойкого слоя на поверхность лопатки дополнительно наносят слой одного или нескольких металлов Nb, Pt, Cr толщиной от 0,1 мкм до 2,0 мкм.

4. Способ по п.2, отличающийся тем, что перед нанесением внутреннего жаростойкого слоя на поверхность лопатки дополнительно наносят слой одного или нескольких металлов Nb, Pt, Cr толщиной от 0,1 мкм до 2,0 мкм.

5. Способ по любому из пп.2 и 4, отличающийся тем, что внутренний жаростойкий слой формируют толщиной от 2 мкм до 10 мкм и с количеством микро- или нанослоев, составляющим от 3 до 200.

6. Способ по любому из пп.1-4, отличающийся тем, что внешний жаростойкий слой формируют с толщиной от 10 мкм до 60 мкм и с количеством микро- или нанослоев, составляющим от 3 до 1000.

7. Способ по любому из пп.1-4, отличающийся тем, что перед нанесением внешнего жаростойкого слоя на поверхность внутреннего жаростойкого слоя наносят переходный слой одного или нескольких металлов Nb, Pt, Cr толщиной от 0,1 мкм до 2,0 мкм.

8. Способ по п.5, отличающийся тем, что перед нанесением внешнего жаростойкого слоя на поверхность внутреннего жаростойкого слоя наносят переходный слой одного или нескольких металлов Nb, Pt, Cr толщиной от 0,1 мкм до 2,0 мкм.

9. Способ по п.6, отличающийся тем, что перед нанесением внешнего жаростойкого слоя на поверхность внутреннего жаростойкого слоя наносят переходный слой одного или нескольких металлов Nb, Pt, Cr толщиной от 0,1 мкм до 2,0 мкм.

10. Способ по любому из пп.1-4, 8, 9, отличающийся тем, что нанесение слоев покрытия осуществляют шликерным, или газотермическим, или магнетронными методами или электронно-лучевым испарением и конденсацией в вакууме.

11. Способ по п.5, отличающийся тем, что нанесение слоев покрытия осуществляют шликерным, или газотермическим, или магнетронными методами или электронно-лучевым испарением и конденсацией в вакууме.

12. Способ по п.6, отличающийся тем, что нанесение слоев покрытия осуществляют шликерным, или газотермическим, или магнетронными методами или электронно-лучевым испарением и конденсацией в вакууме.

13. Способ по п.7, отличающийся тем, что нанесение слоев покрытия осуществляют шликерным, или газотермическим, или магнетронными методами или электронно-лучевым испарением и конденсацией в вакууме.

14. Способ по п.10, отличающийся тем, что нанесение слоев покрытия осуществляют шликерным, или газотермическим, или магнетронными методами или электронно-лучевым испарением и конденсацией в вакууме.

15. Способ по любому из пп.1-4, 8, 9, 11-14, отличающийся тем, что ионную имплантацию проводят при энергии ионов от 0,2 кэВ до 30 кэВ и дозе имплантации ионов от 1010 до 5·1020 ион/см2.

16. Способ по п.5, отличающийся тем, что ионную имплантацию проводят при энергии ионов от 0,2 кэВ до 30 кэВ и дозе имплантации ионов от 1010 до 5·1020 ион/см2.

17. Способ по п.6, отличающийся тем, что ионную имплантацию проводят при энергии ионов от 0,2 кэВ до 30 кэВ и дозе имплантации ионов от 1010 до 5·1020 ион/см2.

18. Способ по п.7, отличающийся тем, что ионную имплантацию проводят при энергии ионов от 0,2 кэВ до 30 кэВ и дозе имплантации ионов от 1010 до 5·1020 ион/см2.

19. Способ по п.10, отличающийся тем, что ионную имплантацию проводят при энергии ионов от 0,2 кэВ до 30 кэВ и дозе имплантации ионов от 1010 до 5·1020 ион/см2.

20. Способ по любому из пп.1-4, 8, 9, 11-14, 16-19, отличающийся тем, что после нанесения покрытия производят его диффузионный отжиг.

21. Способ по п.5, отличающийся тем, что после нанесения покрытия производят его диффузионный отжиг.

22. Способ по п.6, отличающийся тем, что после нанесения покрытия производят его диффузионный отжиг.

23. Способ по п.7, отличающийся тем, что после нанесения покрытия производят его диффузионный отжиг.

24. Способ по п.10, отличающийся тем, что после нанесения покрытия производят его диффузионный отжиг.

25. Способ по п.15, отличающийся тем, что после нанесения покрытия производят его диффузионный отжиг.

Документы, цитированные в отчете о поиске Патент 2012 года RU2441104C2

СПОСОБ НАНЕСЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА ДЕТАЛИ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ 2000
  • Падеров А.Н.
  • Векслер Ю.Г.
RU2264480C2
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ЛОПАТКУ ТУРБИНЫ 1993
  • Шамарина Г.Г.
  • Малышев О.И.
RU2078148C1
ДЕТАЛЬ, ИЗГОТОВЛЕННАЯ ИЗ СУПЕРСПЛАВА С СИСТЕМОЙ ЗАЩИТНОГО ПОКРЫТИЯ 1996
  • Вольфрам Бееле
RU2165478C2
Походная разборная печь для варки пищи и печения хлеба 1920
  • Богач Б.И.
SU11A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1

RU 2 441 104 C2

Авторы

Смыслов Анатолий Михайлович

Смыслова Марина Константиновна

Мингажев Аскар Джамилевич

Дыбленко Юрий Михайлович

Быбин Андрей Александрович

Новиков Антон Владимирович

Бекличеев Павел Васильевич

Петухов Игорь Геннадиевич

Даты

2012-01-27Публикация

2009-04-28Подача