СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО ВЫСОКООКТАНОВОГО БЕНЗИНА Российский патент 2012 года по МПК C07C1/20 C10G2/00 C07C1/04 B01J23/60 

Описание патента на изобретение RU2442767C1

Изобретение относится к нефтехимии и, более конкретно, к способу получения бензина путем каталитической конверсии смеси H2, CO и CO2 через диметиловый эфир и/или метанол и может быть использовано для получения высокооктанового бензина.

Наряду с ростом цен на нефть и общей готовностью искать альтернативные источники углеводородов внимание специалистов крупных компаний сосредотачивается на способах преобразования этих углеводородов в пригодные для использования формы. В связи с эти весьма актуальным становится вовлечение в переработку альтернативных нефти источников углеродсодержащего сырья, таких как природный газ, попутные нефтяные газы, тяжелый мазут, уголь и шламы его переработки, торф, растительная биомасса и т.д., с целью получения высокооктановых компонентов бензина. При этом очень важно получать высококачественный бензин, соответствующий международным требованиям европейского стандарта Евро-4, введенного в действие с 2005 г., который ограничивает содержание ароматических соединений в автобензинах до 30% и, в частности бензола менее 1%.

Первой стадией переработки синтез-газа, полученного из любого углеродсодержащего сырья, в бензин является конверсия его в оксигенаты: ДМЭ и/или MeOH, а второй - превращение оксигенатов в углеводороды.

Все известные способы получения углеводородов бензинового ряда из CO и H2 можно разделить на две основные группы:

- одностадийные процессы, в которых стадия синтеза оксигенатов и углеводородов совмещены путем использования двухкомпонентных катализаторов;

- двухстадийные процессы, в которых синтез оксигенатов и синтез углеводородов проводятся в разных реакторах в присутствии металлоксидных и цеолитных катализаторов соответственно.

Примерами одностадийного способа получения является техническое решение, описанное в заявке WO 2006/126913 A2, согласно которому способ включает в себя получение из синтез-газа метанола, последующую дегидратацию его в ДМЭ и конверсию ДМЭ в бензин, которые осуществляются в одном реакторе. Для достижения высоких конверсий синтез-газа используют циркуляцию газового потока.

Недостатком процесса является высокое содержание ароматических углеводородов (до 60 мас.%).

Одним из первых примеров осуществления двухстадийного способа получения синтетического бензина из синтез-газа является патент СССР №632296, кл. C07C 1/04, B01J 23/80, 1978. Углеводороды получают контактированием окиси углерода и водорода на первой стадии с окисным катализатором синтеза метанола и твердым кислотным неорганическим катализатором дегидратации при 149-372°С с последующим контактированием на второй стадии продуктов первой стадии при 260-455°С с кристаллическим цеолитом. В качестве окисного катализатора синтеза метанола используют смесь окислов меди, хрома, цинка и лантана, взятых в количестве 50-70; 5-15; 15-25; 5-15 вес.ч. соответственно.

Получаемый продукт содержит не менее 30% ароматических углеводородов, среди которых не менее 6% приходится на тетраметилбензол (дурол). Известно, что дурол является нежелательным компонентом топлива, приводящим к сажевым отложениям в карбюраторе и, вследствие высокой температуры плавления (79°С), затрудняющим работу двигателя.

Другим примером является способ, описанный в патентах США №4481305 и 4520216, кл. C07C 1/04, C07C 1/20, 1984, где синтез-газ, имеющий мольное отношение CO/H2 выше 1 и CO/CO2 - от 5 до 20, поступает в реактор синтеза оксигенатов, где контактирует с одним или более катализаторами при температуре 150-400°С и давлении 5-100 бар, а затем газовая смесь без выделения промежуточных продуктов направляется во второй реактор, где в присутствии цеолитного катализатора при температуре 150-600°С ДМЭ превращается в углеводороды.

Общими недостатками описанных способов являются невысокая селективность процесса по углеводородам С5+ и высокое содержание ароматических углеводородов ~40% (в том числе дурола не менее 4%).

Известен способ получения высокооктанового бензина путем переработки синтез-газа в углеводороды в две стадии, описанный в патенте РФ №2143417, C07C 1/04, 27.12.1999 г. На первой стадии исходное сырье контактирует с катализатором, состоящим из цеолита типа ZSM-5 и металлоксидного компонента, содержащего (мас.%): CuO - 38-64, ZnO - 21-34, Cr2O3 - 0-22, Al2O3 - 6-9, смешанных в массовом соотношении 20-50/80-50, газовый поток после реактора первой стадии охлаждают и разделяют на жидкую фракцию и газовую фазу, содержащую непревращенные компоненты синтез-газа и диметиловый эфир, при этом из жидкой фракции далее выделяют диметиловый эфир, а газовую фазу делят на два потока - один идет на смешение с синтез-газом и подается в реактор первой стадии, второй газовый поток направляют на вторую стадию, где при контакте с катализатором, состоящим из цеолита типа ZSM-5 и металлоксидного компонента, содержащего (мас.%) ZnO - 65-70, Cr2O3 - 29-34, W2O5 - 1, смешанных в массовом соотношении 30-99/70-1, происходит превращение диметилового эфира и компонентов синтез-газа в бензиновую фракцию, газообразные углеводороды и водную фракцию. Водную фракцию путем дистилляции делят на воду и метанол, при этом воду используют для приготовления смеси H2, CO и CO2, а метанол направляют на стадию синтеза бензина.

По словам авторов, высокий выход бензиновой фракции достигается путем применения циркуляции, а также за счет использования во втором реакторе бифункционального катализатора, позволяющего дополнительно конвертировать непрореагировавшие оксиды углерода и водород в жидкие углеводороды. Однако организация двухстадийного процесса, как предлагается в данном способе, с независимыми циркуляциями на первой и второй стадии предусматривает наличие двух циркуляционных насосов высокого давления, а значит, существенное увеличение капитальных и эксплуатационных затрат, что можно отнести к недостаткам способа. Кроме того, технический результат не подтвержден ни описанием патента, ни таблицей, которые в данном патенте отсутствуют. Данный способ взят за прототип в Патенте РФ №2175960, C07C 1/02, и в таблице этого патента приведены результаты одного из характерных примеров вышеуказанного технического решения, в котором показан высокий выход ароматических углеводородов (более 40 мас.%).

Наиболее близким по техническому результату является способ получения высокооктанового бензина по патенту РФ №2248341, C07C 1/20, B01J 29/44, опубл. 20.03.2005 г. Согласно выбранному прототипу синтез углеводородов осуществляют в двухконтурном реакционном узле, включающем реактор синтеза ДМЭ из синтез-газа (мольное отношение H2/CO не менее 2) и реактор синтеза углеводородов из ДМЭ, проводимого в присутствии катализатора на основе цеолита типа пентасилов, содержащего оксид цинка и палладий, под давлением 10 МПа при температуре 340°С и объемной скорости подачи сырья 1000-4000 ч-1. Оба реактора работают в проточном режиме.

Процесс проводят в присутствии катализатора на основе цеолитов типа пентасилов с SiO2/Al2O3=25-100, содержащего не более 0,11 мас.% оксида натрия, 0,1-3 мас.% оксида цинка и связующее, который содержит палладий и другие компоненты в следующих соотношениях, мас.%: оксид цинка 0,1-3; палладий 0,1-1; цеолит 50-70 и остальное - связующее.

Полученный продукт содержит до 69% изо-парафинов и до 47% ароматических углеводородов.

Однако производительность процессов, проводимых в проточном режиме, как правило, невысока. В данном случае она не превышает 30 г/м3 синтез-газа.

Задачей предлагаемого изобретения является увеличение производительности процесса получения высокооктанового бензина, повышение селективности по углеводородам C5+ и качества образующегося бензина, а именно снижение содержания ароматических углеводородов, в частности тетраметилбензола - дурола.

Поставленная задача решается тем, что предложен способ получения экологически чистого бензина с октановым числом 92-93 по исследовательскому методу, включающий стадию синтеза ДМЭ из синтез-газа и стадию синтеза углеводородов из ДМЭ, проводимого в присутствии катализатора на основе цеолита типа пентасилов, содержащего оксид цинка и палладий, в котором процесс ведут в циркулирующем режиме так, что поток, выходящий после проведения стадии синтеза углеводородов, возвращают на рециркуляцию в реактор получения диметилового эфира.

Причем на стадии синтеза диметилового эфира процесс проводят при давлении 5-10 МПа и температуре 220-300°С, а на стадии синтеза углеводородов - при давлении 5-10 МПа и температуре 340-360°С, при кратности циркуляции 5-15 объема циркулирующего газа на объем исходного газа (об./об.).

Предлагаемое изобретение позволяет достичь следующих технических результатов:

- увеличить производительность процесса;

- повысить селективность по углеводородам C5+;

- снизить содержание дурола и в некоторых случаях содержание ароматических соединений в жидких продуктах;

- применять синтез-газ практически любого состава для получения высокооктанового бензина.

В предлагаемом изобретении указанные технические результаты достигаются за счет использования катализаторов по прототипу, а также циркуляции газового потока, состоящего из непрореагировавших компонентов синтез-газа и несконденсированных легких углеводородов C1-C4, который, во-первых, положительно влияет на распределение градиента температуры в реакторе, обеспечивает снижение доли нежелательных вторичных реакций крекинга образующихся углеводородов и алкилирования первичных ароматических углеводородов в результате уменьшения времени контакта сырья.

Предлагаемый способ получения высокооктанового бензина позволяет повысить выход углеводородов бензиновой фракции от 70 до 79% на сумму получаемых углеводородов, увеличить производительность процесса от 30 до 120 г/м3 синтез-газа, снизить содержание дурола от 9,0 до не более 1,5 мас.% и в некоторых случаях ароматических соединений от 27 до 16 мас.% в составе получаемых жидких продуктов.

Промышленная применимость заявляемого способа иллюстрируется примерами 2-9, примером 1 - прототип.

Пример 1 (по прототипу)

Катализатор, полученный по методике, описанной в прототипе, и имеющий состав (мас.%) ZnO - 0,1-3,0; Pd - 0,1-1,0; цеолит ЦВМ - 50,0-70,0; связующее - остальное, используют для получения высокооктановых компонентов бензина. В качестве сырья используют газовую смесь, образовавшуюся в процессе синтеза ДМЭ из синтез-газа (мольное отношение H2/CO=2,8) в проточном реакторе, включенном в схему процесса. Процесс проводят под давлением 10 МПа при температуре 340°С и объемной скорости подачи сырья 1000 ч-1 с невысокой производительностью 30 г/м3 поданного СИ-газа. Данные, полученные при применении описанного способа, приведены в табл.1. Выход C5+-углеводородов на сумму углеводородов составляет 70,4 мас.%. Полученный продукт содержит 61,5 мас.% изо-парафинов и 27 мас.% ароматических углеводородов. В составе ароматических углеводородов доминируют триметилбензол и тетраметилбензол - дурол.

Примеры 2-7

Исходный синтез-газ подают в двухреакторный реакционный контур на смешение с циркулирующим в контуре газом. Контур состоит из реактора синтеза оксигенатов, реактора синтеза углеводородов и циркуляционного насоса. Газовый поток, состоящий из исходного синтез-газа и циркулирующего газа, поступает в первый реактор, в котором при давлении 5-10 МПа и в интервале температур 220-300°С на комбинированном металлооксидном катализаторе состава CuO - 23,25; ZnO - 23,25; Cr2O3 - 16,6; Al2O3 - 36,9, разработанном и запатентованном ИНХС РАН (Патент РФ №2218988, 2003 г.), осуществляется синтез оксигенатов (ДМЭ и метанола - MeOH). Затем парогазовая смесь из реактора синтеза оксигенатов без промежуточного их отделения от непревращенных компонентов синтез-газа поступает во второй реактор, где в присутствии цеолитного катализатора по прототипу при том же давлении, что и в реакторе синтеза оксигенатов, и температуре 340-360°С осуществляют синтез углеводородов. Контактная смесь из реактора поступает в последовательно соединенные сепараторы, где происходит разделение ее на водную, углеводородную и газовую фазу. Газовая фаза, содержащая непрореагировавшие компоненты синтез-газа и легкие углеводородные газы C1-C4, разделяется на два потока. Первый поток поступает на вход циркуляционного насоса и возвращается в реактор синтеза оксигенатов. Второй (отдувочный) поток используется для технических нужд. Полученные результаты представлены в таблице 1.

При сравнении данных, полученных по прототипу и по предлагаемому способу, видно, что использование циркуляции позволяет не только существенно (в 4 раза) поднять производительность процесса, но и значительно улучшить состав получаемого бензина. Полученный бензин характеризуется высоким суммарным содержанием изо- и цикло-парафинов не менее 70 мас.%, содержание ароматических углеводородов составляет около 20 мас.%, причем основная часть ее представлена пара- и мета-ксилолами, а содержание тетраметилбензола (дурола) не превышает 1,5%. Показатели процесса практически не зависят от состава исходного сырья.

Таблица 1 Условия опыта и основные показатели процесса получения углеводородов № примера Условия опыта и 1 2 3 4 5 6 7 основные показатели (прототип) Давление, МПа 10 10 10 7 5 10 10 Т первой стадии, °С 280 280 280 300 280 280 280 Т второй стадии, °С 340 340 340 360 340 340 340 Состав исходного синтез-газа, поступающего на первую стадию синтеза оксигенатов, об.% 67 59 59 59 59 75 74 H2 24 33 33 33 33 13 2,7 CO 2 2 2 2 2 7 19 CO2 7 5 5 5 5 5 4,4 N2 Об. скорость подачи 1000 533 750 750 750 850 850 исходного газа, ч-1 Кратность 0 10 6 6 6 10 6 циркуляции (об./об.) Селективность превращения СО в: ДМЭ 65,4 76,1 71,0 60,4 56,2 34,6 37,9 MeOH 2,5 14,4 17,2 22,3 27,6 65,4 62,1 CO2 32,1 9,4 11,8 17,3 12,8 - - Конверсия, % CO 91,2 86,6 90,2 86,3 91,9 79,2 CO2 - - - - 76,6 93,4 ДМЭ/MeOH 99 100 100 98,9 100 99,9 98,4 Состав бензиновой
фракции, мас.%:
Н-парафины 4,7 8,3 10,8 9,8 10,2 9,2 11,1 Изо-парафины 61,5 59,5 60,5 56,5 51,8 62,3 63,1 циклопарафины 6,8 12,6 12,6 9,5 8,0 8,3 8,6 Ароматические у/в, 27,0 19,6 16,1 24,2 30 20,2 17,2 в т.ч.: бензол 0 0 0 0 0 0 0 толуол 0,4 0,3 0,3 0,3 0,4 0,3 0,3 ксилолы 9,7 16,2 13,2 19,1 23,9 16,0 13,6 триметилбензол 7,5 0,8 0,7 1,1 1,9 1,5 1,4 тетраметилбензол (дурол) 9,0 1,1 0,8 1,3 2,5 1,0 0,7 остальное этил-, изопропилбензол и 0,4 1,2 1,1 2,4 1,3 1,0 1,2 др. Выход C5+ на ∑ углеводородов, мас.% 70,4 79,3 76,9 74,6 67,2 75,1 73,2 Производительность, До 30 118 120 122 117 119 120 г/м3 СИ-газа

Пример 8

Синтез углеводородов проводят аналогично примеру 2. С целью получения информации об изменении показателей процесса, характеризующих стабильность катализатора, во времени осуществляют длительный пробег (не менее 600 часов). В качестве исходного сырья используют синтез-газ состава (об.%): H2 - 59, CO - 33, CO2 - 2, N2 - 5.

Условия и основные показатели процесса получения углеводородов из синтез-газа представлены в табл.2.

Пример 9

Синтез углеводородов проводят аналогично примеру 8 с той разницей, что в качестве исходного сырья используют синтез-газ состава (об.%): H2 - 75, CO - 13, CO2 - 7, N2 - 5.

Условия и основные показатели процесса получения углеводородов из синтез-газа представлены в табл.2.

Таблица 2 Влияние длительности пробега на основные показатели процесса получения углеводородов № примера Условия опыта и основные показатели 8 9 Длительность испытаний, час 100 300 600 100 300 600 Давление, МПа 10 10 Т первой стадии, °С 280 280 Т второй стадии, °С 340 340 Состав синтез-газа, об.%: H2 59 75 CO 33 13 CO2 2 7 N2 5 5 Об. скорость подачи исходного газа, ч-1 533 850 Кратность циркуляции (об./об.) 10 10 Конверсия, % CO 91,2 88,0 91,2 91,9 91,2 91,0 CO2 - - - 76,6 75,9 75,9 ДМЭ/MeOH 100 99,8 99,9 99,9 100,0 99,8 Состав бензиновой фракции, мас.%: Изо-парафины 59,5 60,0 59,0 62,3 61,9 61,5 Н-парафины 8,3 9,0 8,8 9,2 9,6 9,4 циклопарафины 12,6 10,8 11,4 8,3 9,0 8,8 Ароматические у/в, 19,6 20,2 20,8 20,2 19,5 20,3 В том числе: бензол 0,0 0,0 0,0 0,0 0,0 0,0 дурол 0,9 1,1 1,1 0,8 1,2 1,4 Выход C5+ на Σ углеводородов, мас.% 79,3 78,1 78,2 75,1 74,5 74,2 Производительность, 117 116 117 120 121 121 г/м3 СИ-газа

Примеры 8 и 9 демонстрируют практическую применимость предлагаемой технологии для получения высокооктанового бензина из синтез-газа любого состава. Показатели процесса остаются неизменными в течение всего периода испытаний (от 100 до 600 часов). Полученный бензин характеризуется высоким суммарным содержанием изо- и цикло-парафинов не менее 70 мас.%, содержание ароматических углеводородов составляет около 20 мас.%, причем основная часть ее представлена пара- и мета-ксилолами, а содержание тетраметилбензола (дурола) не превышает 1,5%.

Предлагаемая технология позволяет получать качественный и экологически чистый высокооктановый бензин (о.ч. не менее 90 пунктов по ИМ), отвечающий нормам международного стандарта и не содержащий практически дурола.

Кроме того, предлагаемое техническое решение также позволяет увеличить производительность процесса получения высокооктанового бензина до 116-121 г/м3 СИ-газа по сравнению с производительностью процесса, проводимого в условиях прототипа - 30 г/м3 СИ-газа.

Похожие патенты RU2442767C1

название год авторы номер документа
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ СМЕСИ УГЛЕВОДОРОДОВ С НИЗКИМ СОДЕРЖАНИЕМ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ 2010
  • Хаджиев Саламбек Наибович
  • Колесниченко Наталия Васильевна
  • Маркова Наталья Анатольевна
  • Букина Зарета Муратовна
  • Ионин Дмитрий Алексеевич
  • Кулумбегов Руслан Владимирович
RU2442650C1
КОМБИНИРОВАННЫЙ КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ОБОГАЩЁННОГО ТРИПТАНОМ ЭКОЛОГИЧЕСКИ ЧИСТОГО ВЫСОКООКТАНОВОГО БЕНЗИНА В ЕГО ПРИСУТСТВИИ 2017
  • Хаджиев Саламбек Наибович
  • Букина Зарета Муратовна
  • Курумов Сурхо Арсемикович
  • Колесниченко Наталия Васильевна
RU2674769C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ БЕНЗИНОВОГО РЯДА ИЗ ПОПУТНОГО НЕФТЯНОГО ГАЗА ЧЕРЕЗ СИНТЕЗ-ГАЗ И ОКСИГЕНАТЫ 2015
  • Хаджиев Саламбек Наибович
  • Колесниченко Наталья Васильевна
  • Лин Галина Ивановна
  • Магомедова Мария Владимировна
  • Ионин Дмитрий Александрович
  • Пересыпкина Екатерина Геннадьевна
  • Букина Зарета Муратовна
  • Кипнис Михаил Аронович
RU2616981C2
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОЙ НЕФТИ ИЗ ПРИРОДНОГО ИЛИ ПОПУТНОГО НЕФТЯНОГО ГАЗА (ВАРИАНТЫ) 2016
  • Хаджиев Саламбек Наибович
  • Магомедова Мария Владимировна
  • Пересыпкина Екатерина Геннадьевна
  • Кипнис Михаил Аронович
  • Букина Зарета Муратовна
RU2649629C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ ИЗ УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ 1998
  • Мысов В.М.
  • Ионе К.Г.
  • Пармон В.Н.
RU2143417C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВЫХ БЕНЗИНОВ С НИЗКИМ СОДЕРЖАНИЕМ БЕНЗОЛА И ДУРОЛА 2010
  • Тарасов Андрей Леонидович
  • Лищинер Иосиф Израилевич
  • Малова Ольга Васильевна
  • Беляев Андрей Юрьевич
  • Виленский Леонид Михайлович
RU2440189C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО ВЫСОКООКТАНОВОГО БЕНЗИНА 2003
  • Сливинский Е.В.
  • Колесниченко Н.В.
  • Маркова Н.А.
  • Букина З.М.
  • Розовский А.Я.
  • Лин Г.И.
  • Колбановский Ю.А.
  • Платэ Н.А.
RU2248341C1
СПОСОБ ПРЕВРАЩЕНИЯ ТРУДНО КОНВЕРТИРУЕМЫХ ОКСИГЕНАТОВ В БЕНЗИН 2006
  • Йонсен Финн
  • Восс Бодил
  • Нерлов Йеспер
RU2428455C2
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДОВ ИЗ БИОМАССЫ 2018
  • Зайченко Виктор Михайлович
  • Лищинер Иосиф Израилевич
  • Малова Ольга Васильевна
  • Тарасов Андрей Леонидович
  • Качалов Владимир Викторович
  • Ларина Ольга Михайловна
RU2674158C1
СПОСОБ ПОЛУЧЕНИЯ БЕНЗИНА ИЗ УГЛЕВОДОРОДНОГО ГАЗОВОГО СЫРЬЯ 2001
  • Лин Г.И.
  • Колбановский Ю.А.
  • Розовский А.Я.
  • Мортиков Е.С.
  • Андрюшкин С.М.
RU2196761C2

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО ВЫСОКООКТАНОВОГО БЕНЗИНА

Изобретение относится к нефтехимии и, более конкретно, к способу получения бензина путем каталитической конверсии смеси H2, CO и CO2 через диметиловый эфир и может быть использовано для получения высокооктанового бензина. Способ получения экологически чистого бензина с октановым числом 92-93 по исследовательскому методу включает стадию синтеза ДМЭ из синтез-газа в реакторе синтеза оксигенатов, парогазовая смесь из реактора синтеза оксигенатов без промежуточного их отделения от непревращенных компонентов поступает на стадию синтеза углеводородов из ДМЭ, проводимого в присутствии катализатора на основе цеолита типа пентасилов, содержащего оксид цинка и палладий, затем контактная смесь поступает в сепараторы, где происходит ее разделение на водную, углеводородную и газовую фазы, газовую фазу разделяют на два потока, первый поток рециркулирует в реактор синтеза оксигенатов (получения диметилового эфира) Технический результат - улучшение качества бензина за счет снижения содержания дурола, повышение селективности по C5+, повышение производительности процесса, возможность применять синтез-газ практически любого состава для получения высокооктанового бензина. 3 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 442 767 C1

1. Способ получения экологически чистого бензина с октановым числом 92-93 по исследовательскому методу, включающий стадию синтеза ДМЭ из синтез-газа и стадию синтеза углеводородов из ДМЭ, проводимого в присутствии катализатора на основе цеолита типа пентасилов, содержащего оксид цинка и палладий, отличающийся тем, что стадию синтеза диметилового эфира осуществляют в реакторе синтеза оксигенатов, парогазовая смесь из реактора синтеза оксигенатов без промежуточного их отделения от непревращенных компонентов синтез-газа поступает в реактор синтеза углеводородов из ДМЭ, контактная смесь из реактора поступает в сепараторы, где происходит разделение ее на водную, углеводородную и газовую фазы, газовую фазу разделяют на два потока, первый поток рециркулируют в реактор синтеза оксигенатов (получения диметилового эфира).

2. Способ получения экологически чистого бензина по п.1, отличающийся тем, что процесс на стадии синтеза диметилового эфира проводят при давлении 5-10 МПа и температуре 220-300°С.

3. Способ получения экологически чистого бензина по п.1, отличающийся тем, что процесс на стадии синтеза углеводородов проводят при давлении 5-10 МПа и температуре 340-360°С.

4. Способ получения экологически чистого бензина по п.1, отличающийся тем, что процесс ведут при кратности циркуляции 5-15 об./об.

Документы, цитированные в отчете о поиске Патент 2012 года RU2442767C1

КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО ВЫСОКООКТАНОВОГО БЕНЗИНА 2003
  • Сливинский Е.В.
  • Колесниченко Н.В.
  • Маркова Н.А.
  • Букина З.М.
  • Розовский А.Я.
  • Лин Г.И.
  • Колбановский Ю.А.
  • Платэ Н.А.
RU2248341C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ ИЗ УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ 1998
  • Мысов В.М.
  • Ионе К.Г.
  • Пармон В.Н.
RU2143417C1
Способ получения синтетического бензина 1974
  • Кларенс Дейтон Чанг
  • Антони Джон Силвестри
SU632296A3
US 4481305 A, 06.11.1984
US 4520216 A, 28.05.1985
Устройство для проходки буровых скважин 1933
  • Рексин С.Э.
  • Соловьев В.А.
SU40914A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1

RU 2 442 767 C1

Авторы

Хаджиев Саламбек Наибович

Колесниченко Наталия Васильевна

Лин Галина Ивановна

Маркова Наталья Анатольевна

Букина Зарета Муратовна

Ионин Дмитрий Алексеевич

Графова Галина Михайловна

Даты

2012-02-20Публикация

2010-08-11Подача