СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО 1,4-ЦИС-ПОЛИБУТАДИЕНА Российский патент 2012 года по МПК C08F136/06 C08C19/00 C08C19/28 C08F2/44 

Описание патента на изобретение RU2442796C1

Изобретение относится к технологии получения модифицированного цис-1,4-полибутадиена под влиянием каталитических систем Циглера-Натта и может быть использовано в промышленности СК, а получаемые полимеры в производстве резино-технических изделий, различных видов шин с высокими эксплуатационными характеристиками.

Известен способ получения цис-1,4-полибутадиена с использованием каталитической системы на основе соединений редкоземельных соединений (РЗС) (патент РФ №2248845, МПК B01J 37/04; C08F 04/52, 36/06, опубл. 27.03.2005 г.).

В вышеуказанном изобретении полимеризацию бутадиена осуществляют под влиянием предварительно сформированного в присутствии мономера каталитического комплекса, состоящего из карбоксилата или фосфата РЗС, алюминий органического соединения (наиболее часто употребляются триизобутилалюминий (ТИБА) и диизобутилалюминий гидрид (ДИБАГ)), хлорирующего агента (этилалюминийсесквихлорид (ЭАСХ).

Недостатком этого изобретения является то, что цис-1,4-полибутадиен с узким молекулярно-массовым распределением макромолекул (<2,5) из-за строго линейного строения молекулярных цепей характеризуется высокими показателями пластичности и хладотекучести.

Высокая пластичность и хладотекучесть цис-1,4-полибутадиена требует дополнительных энергозатрат при выделении его из растворов и сушке на сушильных агрегатах (снижение производительности оборудования за счет повышенной тянучести и липкости каучука). Такие каучуки плохо транспортируются (растекаются) в любой таре (мешки, контейнеры и т.д.) и плохо хранятся на складах как у производителей, так и у потребителей.

Известно, что с целью снижения хладотекучести и пластичности цис-1,4-полибутадиена для разветвления полимерной цепи применяют различные агенты пост-полимеризационной модификации (хлорида фосфора, олова, кремния и другие соединения). Однако эти способы не нашли практического применения из-за их недостаточной экологичности (L.Friebe, О.Nuyken, W.Obrecht «Катализаторы Циглера-Натта на основе неодима и их применение», стр.56, 2001 г.).

Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу является способ получения полибутадиена (патент США 7.112632 B2, МПК C08F 8/08, C08F 136/06), основанный на использовании в качестве агентов модификации эпоксидированных растительных масел, эпоксидированных полибутадиенов, малеинизированных полибутадиенов (Ricon), эпоксидированных сополимеров диенов.

Недостатком этого способа является то, что все эти модификаторы являются дорогими.

Известен способ модификации резиновых смесей и резин с помощью низкомолекулярных ненасыщенных поликетонов (патент РФ №2345101, МПК C08J 3/20, C08L 21/00, C08C 19/04, опубл. 27.01.2009 г.), где модифицированная резиновая смесь готовится путем простого одновременного или последовательного смешения всех необходимых компонентов (высокомолекулярного каучука, низкомолекулярного ненасыщенного поликетона, наполнителей, вулканизующих агентов, пластификаторов и т.д.), а также добавлением низкомолекулярного каучука в готовые резиновые смеси с их последующим перемешиванием. Перемешивание и изготовление резиновой композиции осуществляется на стандартном смесительном оборудовании - вальцах, роторных или шнековых смесителях. Однако указанный способ модификации является довольно энергозатратным и требует значительного расхода поликетонов.

Технической задачей настоящего изобретения является способ получения модифицированного цис-1,4-полибутадиена с вязкостью по Муни 40-50 усл.ед, узким ММР (≤2,5) и низкой хладотекучестью (не более 25 мм/час).

Технический результат изобретения заключается в получении цис-1,4-полибутадиена с пониженной пластичностью и хладотекучестью, что облегчает выделение каучука из раствора, повышает сохранность формы брикетов каучука при их хранении и транспортировке, а также улучшает свойства вулканизатов на его основе. Кроме того, использование в качестве модификаторов ненасыщенных поликетонов позволит удешевить выпускаемый каучук, т.к. затраты на производство поликетонов значительно ниже стоимости модификаторов, используемых в производстве модифицированного 1,4-цис-полибутадиена. Использование указанного способа не требует значительных капитальных затрат.

Поставленная задача достигается тем, что получение модифицированного 1,4-цис-полибутадиена осуществляют полимеризацией бутадиена в среде углеводородного растворителя в присутствии неодимсодержащего каталитического комплекса с последующим добавлением модификаторов в количестве 1-40 ммоль/кг бутадиена при конверсии полимера ≥95% при температуре 55-85°C. В качестве модификаторов используют жидкие поликетоны, со среднечисловым молекулярным весом 5500-15000, содержащие от 0,1 до 16 мас.% кислорода в виде карбонильных групп и двойные углерод-углеродные связи. Преимущество предлагаемых в качестве модификаторов жидких» поликетонов в том, что они получены из полибутадиена и олигодиенов, без использования катализаторов и дорогих реагентов.

Используемые в качестве модификатора ненасыщенные поликетоны с необходимым содержанием карбонильных "групп и необходимым молекулярным весом получают путем некаталитического оксигенирования цис-1,4-полибутадиенового каучука с помощью закиси азота (N2O) при температуре 50-350°C и давлении N2O 0.01-100 атм. согласно патентам [Патент РФ №2230754, приор. 23.05.2003, МПК C08F 8/06; C08C 19/04. Патент РФ №2235102 приор. 23.05.2003, МПК C08F 8/06; C08C 19/04. Патент РФ №2283849, приор. 17.11.2004, МПК C08F 8/06; C08C 19/04. Патент РФ №2280044, 16.12.2004, МПК C08F 8/06; C08C 19/04. EP 1627890 (B1), 17.09.2008, K.A.Dubkov, et al.; Pat. US 7385011 (B2), 10.06.2008, K.A.Dubkov, et al.].

Получаемые таким способом ненасыщенные поликетоны представляют собой низкомолекулярные полимеры, имеющие в своем составе статистически распределенные по полимерной цепи кетонные (>C=O) функциональные группы, а также бутадиеновые звенья с двойными углерод-углеродными связями [K.A.Dubkov et al., New reaction for the preparation of liquid rubber, J.Polym. Sci., Part A: Polym. Chem. 44 (2006) 2510; S.V.Semikolenov et al., Ketonization of a nitrile-butadiene rubber by nitrous oxide. Comparison with the ketonization of other type diene rubbers, European Polym. J. 45 (2009) 3355]. Их состав может быть выражен следующей формулой:

где значения m и n зависят от степени оксигенирования исходного каучука.

Варьирование условий оксигенирования позволяет в широких пределах регулировать молекулярный вес получаемых ненасыщенных поликетонов и содержание в них карбонильных групп [K.A.Dubkov, et al., J.Polym. Sci., Part А: Polym. Chem. 44 (2006) 2510-2520]. Таким образом, указанный метод оксигенирования дополнительно позволяет синтезировать наиболее подходящий для модификации тип ненасыщенного поликетона. Это даст важные преимущества и дополнительные возможности для регулирования свойств цис-1,4-полибутадиена, модифицированного такими поликетонами.

Низкомолекулярные ненасыщенные поликетоны, используемые в качестве модификатора в предлагаемом способе, представляют собой жидкие олигомеры.

Предлагаемый способ, включающий получение модифицированного поликетонами цис-1,4-полибутадиена, позволяет получить более однородный по качеству полимер с высокими технологическими показателями, соответствующими лучшим мировым аналогам, и дает возможность управлять качеством полимера.

Изобретение подтверждается примерами конкретного исполнения.

Пример №1. (контрольный)

Полимеризацию бутадиена (Bt) проводят в углеводородном растворителе в присутствии каталитического комплекса, приготовленного на основе 2-этилгексил фосфата неодима (Nd), с последующим добавлением алкилирующего агента (в данном случае диизобутилалюминийгидрид (ДИБАГ)) и донора галогенов (этилалюминийсесквихлорид (ЭАСХ)). Соотношение компонентов в каталитическом комплексе составляет Bt: Nd: ДИБАГ: ЭАСХ = (15,0÷25,0):1,0:(8,0÷10,0):(2,0÷3,0). Время созревания комплекса 22-23 ч при температуре 25°C. Полимеризацию проводят в реакторе объемом 13 л при температуре полимеризации 60°C. При достижении конверсии полимера 95%, добавляют антиоксидант, дегазируют и сушат на вальцах. В полученном полимере определяют вязкость по Муни, пластичность, хладотекучесть, ММР.

Результаты эксперимента представлены в таблице 1.

Пример №2

Аналогичен примеру №1, с тем отличием, что при достижении конверсии 95% отбирают 2 кг полимеризата. Вводят антиоксидант, полимер дегазируют и высушивают на вальцах. Затем определяют физико-механические показатели (вязкость по Муни, эластическое восстановление, пластичность, хладотекучесть) и методом гельпроникающей хроматографии - среднечисловую молекулярную массу (Mn), средневесовую молекулярную массу (Mw), среднемолекулярную массу (Mz), полидисперсность (Mw/Mn) (контрольный образец). В оставшийся полимеризат через дозатор подают жидкий ненасыщенный поликетон (модификатор) с массовой долей кислорода 5,7%,

Mn=5500 в количестве - 1 ммоль/кг бутадиена (0,28 г/кг бутадиена) растворенного в 30 мл толуола.

Указанный ненасыщенный поликетон приготовлен согласно патентам [РФ №2230754; EP 1627890 (B1), 17.09.2008; US 7385011 (B2), 10.06.2008] путем оксигенирования закисью азота цис-1,4-полибутадиеного каучука СКД (Mn=128000, Mw/Mn=2,2).

Процесс модификации проводят при постоянном перемешивании в течение 60 мин при температуре 60°C. Затем вводят антиоксидант - агидол-2. Массовая доля агидола-2 составляет 0,6%. Полимер дегазируют и сушат на вальцах. Определяют физико-механические показатели и молекулярно-массовые характеристики (таблица №1).

Пример №3.

Аналогичен примеру №2, с тем отличием, что количество вводимого модификатора - ненасыщенного поликетона с массовой долей кислорода 2,7% и Mn=15000 составляет - 1,7 ммоль/кг бутадиена (0,48 г/кг бутадиена). Указанный ненасыщенный поликетон приготовлен согласно патентам [РФ №2230754; EP 1627890 (B1); US 7385011 (B2)] путем оксигенирования закисью азота цис-1,4-полибутадиеного каучука СКД (Mn=128000, Mw/Mn=2.2).

Модификацию осуществляют при достижении конверсии полимера 95% в течение 30 мин при температуре 85°C. Затем вводят антиоксидант агидол-2. Массовая доля агидола-2 составляет 1%. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №4.

Аналогичен примеру №2, с тем отличием, что количество вводимого модификатора - ненасыщенного поликетона составляет 2,85 ммоль/ кг бутадиена (0,8 г/кг бутадиена). Указанный ненасыщенный поликетон приготовлен согласно патентам [РФ №2230754; EP 1627890 (B1), 1; US 7385011 (B2), 10.06.2008] путем оксигенирования закисью азота цис-1,4-полибутадиеного каучука СКД (Mn=128000, Mw/Mn=2,2).

Модификацию осуществляют при достижении конверсии полимера 96% в течение 30 мин при температуре 50°C. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №5

Аналогичен примеру №2, с тем отличием, что количество вводимого модификатора составляет - 7,1 ммоль/кг бутадиена (2,0 г/кг бутадиена). Модификацию осуществляют при достижении конверсии полимера 99% в течение 20 мин при температуре 70°C. Затем вводят антиоксидант-ирганокс - 1520. Массовая доля ирганокса - 1520 составляет 0,2%. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №6

Аналогичен примеру 2, с тем отличием, что количество вводимого модификатора составляет 15,0 ммоль/кг бутадиена (4,2 г/кг бутадиена). Модификацию осуществляют при достижении конверсии полимера 99% в течение 20 мин при температуре 65°C. Затем вводят антиоксидант-ирганокс - 1520. Массовая доля ирганокса - 1520 составляет 0,4%. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №7

Аналогичен примеру 2, с тем отличием, что количество вводимого модификатора составляет 20 ммоль/кг бутадиена (5,6 г/кг бутадиена). Модификацию осуществляют при достижении конверсии полимера 96% в течение 15 мин при температуре 80°C. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №8

Аналогичен примеру №2, с тем отличием, что количество вводимого модификатора составляет - 30 ммоль/кг бутадиена (8,4 г/кг бутадиена). Модификацию осуществляют при достижении конверсии полимера 98% в течение 60 мин при температуре 60°C. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №9

Аналогичен примеру №2, с тем отличием, что количество вводимого модификатора составляет 40 ммоль/кг бутадиена (11,2 г/кг бутадиена). Модификацию осуществляют при достижении конверсии полимера 99% в течение 30 мин при температуре 60°C. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №10

Аналогичен примеру №2, с тем отличием, что в качестве модификатора используют жидкий ненасыщенный поликетон с массовой долей кислорода 2,7%, Mn=15000, Xc=c=9,4% в количестве 2,1 ммоль/кг (1,26 г/кг бутадиена). Модификацию осуществляют при достижении конверсии полимера 95% в течение 40 мин при температуре 55°C. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №11

Аналогичен примеру №10, с тем отличием, что количество модификатора с массовой долей кислорода 0,1%, Mn=7000 составляет 3,1 ммоль/кг (1,85 г/кг бутадиена). Модификацию осуществляют при достижении конверсии полимера 97% в течение 60 мин при температуре 60°C. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №12

Аналогичен примеру №2, с тем отличием, что полимеризацию бутадиена проводят в углеводородном растворителе в присутствии каталитического комплекса, приготовленного на основе карбоксилата (версатата) неодима, с последующим добавлением алкилирующего агента (ДИБАГ) и донора галогенов (ЭАСХ). Соотношение компонентов Bt: Nd: ДИБАГ: ЭАСХ в каталитическом комплексе составляет (4÷10)-1-(10,0÷13,0)-(1,6÷3,0). Время созревания комплекса 18-23 ч при температуре 25°C. Количество вводимого модификатора составляет - 10,3 ммоль/кг бутадиена (2,88 г/кг бутадиена). Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Пример №13

Аналогичен примеру №12, с тем отличием, что в качестве модификатора используют жидкий ненасыщенный поликетон с массовой долей кислорода 2,7%, Mn=15000, Xc=с=9,4% в количестве 2,07 ммоль/кг (0,58 г/кг). Модификацию осуществляют при достижении конверсии полимера 97% в течение 30 мин при температуре 65°C. Физико-механические показатели и молекулярно-массовое распределение полученного полимера приведены в таблице №1.

Таблица 1 Результаты испытаний полученных полимеров. № примера Вязкость по Муни контрольного образца Мисх, усл. ед Вязкость по Муни модифицированного образца Ммод, усл. ед Пластичность по Карреру Mw/Mn хладотекучесть, мм/час Z критерий контрольный по изобретению 1. 45,0 - 0,56 2,19 35,8 - 0,73 2. 36,4 40,2 0,50 2,38 - 27,5 0,78 3. 28,7 42,0 0,50 2,29 80,0 20,8 0,96 4. 34,0 47,1 0,46 2,35 - 21,9 0,81 5. 32,0 43,2 0,47 2,43 60,0 20,7 0,87 6. 38,0 50,0 0,42 2,40 13,0 0,93 7. 25,3 40,8 0,40 2,46 60,5 9,4 0,97 8. 34,4 49,9 0,37 2,50 - 6,3 0,96 9. 25,0 43,9 0,36 2,49 - 4,0 1,0 10. 42,1 50,0 0,50 2,36 61,0 20,5 0,97 11. 37,2 48,8 0,50 2,29 41,5 20,4 0,97 12. 36,0 43,0 0,53 2,50 44,0 23,3 0,97 13. 37,0 42,0 0,54 2,48 - 24,8 0,98 по прототипу - 35-48 - 2,0-2,3 - - -

Пример №14

На основе полученного по примеру 4 полимера готовят резиновую смесь по следующей рецептуре:

модифицированный каучук - 100 мас.ч.

технический углерод - 60 мас.ч.

белила цинковые - 3 мас.ч.

масло нафтеновое - 15 мас.ч.

сера - 1,5 мас.ч.

сульфенамид Т - 0,9 мас.ч.

Каучук смешивают с ингредиентами на вальцах при температуре валков (35±5)°C по режиму, указанному в ТУ 38.303-03-071-2002. Определяют вулканизационные характеристики: условное напряжение, условную прочность при растяжении и относительное удлинение при разрыве (таблица 2).

Пример №15

Аналогичен примеру №14 с тем отличием, что резиновую смесь готовят на основе полимера, полученного по примеру 5. Результаты испытаний приведены в таблице №2.

Пример №16

Аналогичен примеру №14 с тем отличием, что резиновую смесь готовят на основе полимера, полученного по примеру 7. Результаты испытаний приведены в таблице №2.

Таблица 2 Вулканизационные характеристики полимеров. № п/п Наименование показателей ТУ 38.303-03-071-2002 пример 14 пример 15 пример 16 Свойства вулканизатов 12. Оптимальная продолжительность вулканизации при 143°С, мин. - 35 50 25 13. Условное напряжение при 300% удл, МПа не менее 11,0 11,0 11,97 11,11 14. Условная прочность при растяжении, МПа не менее 16,8 17,93 18,87 18,23 15. Относительное удлинение при разрыве, % не менее 360 450 441 430 16. Относительная остаточная деформация после разрыва, % - 8 8 8

Результаты, представленные в таблицах, подтверждают, что предложенный способ, включающий модификацию 1,4 цис-полибутадиена «жидкими» поликетонами, дает возможность получить цис-1,4-полибутадиен с вязкостью по Муни 40-50 усл. ед, с узким ММР (≤2,5), низкой хладотекучестью (≤25 мм/час) и улучшенными свойствами вулканизатов.

В настоящее время находит применение метод оценки качества каучука СКД-НД с помощью критерия Z (Ж, «Промышленное производство и использование эластомеров», М, 2010, №1. с 8-11), в соответствии с которым полимер обладает хорошими пласто-эластическими свойствами при Z≤1. Предлагаемый метод модификации 1,4 цис-полибутадиена жидкими поликетонами показывает, что получаемый модифицированный 1,4 цис-полибутадиен имеет показатель Z≤1.

Показатели качества полимера по заявляемому способу определяют по следующим методикам:

Вязкость по Муни - по ГОСТ 10722 (ISO 289-1), хладотекучесть - по ГОСТ 19920.18-74, пластичность и эластическое восстановление - по ГОСТ 19920.17-74.

Молекулярно-массовые характеристики полимеров определяют методом гель-проникающей хроматографии (методика ОАО «Воронежсинтезкаучук» ДК 229, СК 3089).

Похожие патенты RU2442796C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИТИЧЕСКОЙ СИСТЕМЫ ДЛЯ ПОЛИМЕРИЗАЦИИ БУТАДИЕНА И СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТАДИЕНА 2010
  • Ковшов Юрий Семенович
  • Рачинский Алексей Владиславович
  • Марков Борис Александрович
  • Хохлова Ольга Анатольевна
RU2442653C2
СПОСОБ ПОЛУЧЕНИЯ 1,4-ЦИС-ПОЛИБУТАДИЕНА 2015
  • Лагунова Светлана Алексеевна
  • Рахматуллин Артур Игоревич
  • Малыгин Алексей Викторович
  • Киселёв Иван Сергеевич
  • Ткачёв Алексей Владимирович
RU2626967C2
СПОСОБ МОДИФИКАЦИИ РЕЗИНОВЫХ СМЕСЕЙ И РЕЗИН 2009
  • Ворончихин Василий Дмитриевич
  • Ильин Игорь Алексеевич
  • Ершов Дмитрий Васильевич
  • Дубков Константин Александрович
  • Иванов Дмитрий Петрович
  • Семиколенов Сергей Владимирович
  • Панов Геннадий Иванович
RU2414486C2
СПОСОБ МОДИФИКАЦИИ РЕЗИНОВЫХ СМЕСЕЙ И РЕЗИН 2007
  • Ворончихин Василий Дмитриевич
  • Ильин Игорь Алексеевич
  • Ершов Дмитрий Васильевич
  • Дубков Константин Александрович
  • Иванов Дмитрий Петрович
  • Семиколенов Сергей Владимирович
  • Панов Геннадий Иванович
RU2345101C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ ЦИС-1,4(СО)ПОЛИМЕРОВ БУТАДИЕНА 2010
  • Бодрова Вера Сергеевна
  • Бубнова Светлана Васильевна
  • Васильев Валентин Александрович
  • Дроздов Борис Трофимович
  • Пассова Светлана Соломоновна
  • Арутюнян Артур Фрунзикович
  • Цыпкина Ирина Михайловна
RU2426747C1
МОДИФИЦИРОВАННЫЕ ПОЛИДИЕНЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2019
  • Бойко Лилия Андреевна
  • Ярцева Татьяна Александровна
RU2803602C1
КОМПОЗИЦИЯ НА ОСНОВЕ ЦИС-БУТАДИЕНОВОГО КАУЧУКА 2003
  • Забористов Валерий Николаевич
  • Беликов Владимир Анатольевич
  • Ряховский Валерий Сергеевич
  • Калистратова Вера Владимировна
RU2286362C2
СПОСОБ ПОЛУЧЕНИЯ КАУЧУКОВ С ПОНИЖЕННОЙ ХЛАДОТЕКУЧЕСТЬЮ 2015
  • Елисеева Ирина Владиславовна
  • Туренко Светлана Викторовна
  • Лемпорт Павел Сергеевич
  • Нагорняк Айрат Филлипович
  • Гуцал Алена Витальевна
RU2686097C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ ПОЛИДИЕНОВ 2020
  • Ярцева Татьяна Александровна
  • Лагунова Светлана Алексеевна
  • Артемьева Ольга Ивановна
RU2804706C1
СПОСОБ ПОЛУЧЕНИЯ РАЗВЕТВЛЕННОГО ПОЛИДИЕНА 2019
  • Джабаров Георгий Викторович
  • Ткачев Алексей Владимирович
  • Ярцева Татьяна Александровна
  • Лагунова Светлана Алексеевна
RU2815816C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО 1,4-ЦИС-ПОЛИБУТАДИЕНА

Изобретение относится к получению модифицированного цис-1,4-полибутадиена в присутствии каталитических систем Циглера-Натта, получаемый полимер применяют в производстве резино-технических изделий, шин с высокими эксплуатационными характеристиками. Способ получения осуществляют полимеризацией бутадиена в углеводородном растворителе в присутствии неодимсодержащего катализатора с последующим добавлением модификатора и антиоксиданта, выделением и сушкой полимера, в качестве модификатора используют низкомолекулярные ненасыщенные поликетоны, содержащие от 0,1 до 16 мас.% кислорода в виде карбонильных групп и двойные углерод-углеродные связи, среднечисловой молекулярный вес поликетонов составляет от 5500 до 15000, поликетоны вводят в полимеризат при конверсии мономера равно и более 95% в количестве от 1 до 40 ммоль/кг бутадиена (0,2-12,0 г/кг бутадиена), подаваемого на полимеризацию, при постоянном перемешивании в течение 15-60 мин при температуре 55-85°C, в качестве неодимсодержащего катализатора используют этилгексилфосфат неодима или версатат неодима, после завершения процесса модификации добавляют антиоксидант в количестве 4-5 г/кг полимера. Технический результат - получение цис-1,4-полибутадиена с вязкостью по Муни 40-50 усл. ед. с узким ММР (≤2,5), низкой хладотекучестью (≤25 мм/час) и улучшенными свойствами вулканизатов. 3 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 442 796 C1

1. Способ получения модифицированного 1,4-цис-полибутадиена полимеризацией бутадиена в углеводородном растворителе в присутствии неодим-содержащего катализатора с последующим добавлением модификатора и антиоксиданта, выделением и сушкой полимера, отличающийся тем, что в качестве модификатора используют низкомолекулярные ненасыщенные поликетоны, содержащие от 0,1 до 16 мас.% кислорода в виде карбонильных групп и двойные углерод-углеродные связи, и имеющие среднечисловой молекулярный вес от 5500 до 15000.

2. Способ по п.1, отличающийся тем, что поликетоны вводят в полимеризат при конверсии мономера, равной и более 95% в количестве от 1 до 40 ммоль/кг бутадиена (0,2-12,0 г/кг бутадиена), подаваемого на полимеризацию, при постоянном перемешивании в течение 15-60 мин при температуре 55-85°C.

3. Способ по п.1, отличающийся тем, что в качестве неодимсодержащего катализатора используют этилгексилфосфат неодима или версатат неодима.

4. Способ по п.1, отличающийся тем, что после завершения процесса модификации добавляют антиоксидант в количестве 4-5 г/кг полимера.

Документы, цитированные в отчете о поиске Патент 2012 года RU2442796C1

US 7112632 B2, 26.09.2006
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ДИЕНОВОГО КАУЧУКА 1995
  • Забористов В.Н.
  • Калистратова В.В.
  • Гольберг И.П.
  • Царина В.С.
  • Марков Б.А.
  • Иванников В.В.
RU2099359C1
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ДИЕНОВОГО КАУЧУКА 1995
  • Забористов В.Н.
  • Калистратова В.В.
  • Гольберг И.П.
  • Царина В.С.
  • Марков Б.А.
  • Иванников В.В.
RU2099359C1
СПОСОБ МОДИФИКАЦИИ РЕЗИНОВЫХ СМЕСЕЙ И РЕЗИН 2007
  • Ворончихин Василий Дмитриевич
  • Ильин Игорь Алексеевич
  • Ершов Дмитрий Васильевич
  • Дубков Константин Александрович
  • Иванов Дмитрий Петрович
  • Семиколенов Сергей Владимирович
  • Панов Геннадий Иванович
RU2345101C1
СПОСОБ МОДИФИЦИРОВАНИЯ ПОЛИМЕРОВ, СОДЕРЖАЩИХ ДВОЙНЫЕ УГЛЕРОД-УГЛЕРОДНЫЕ СВЯЗИ 2003
  • Пармон В.Н.
  • Дубков К.А.
  • Захаров В.А.
  • Староконь Е.В.
  • Ечевская Л.Г.
  • Панов Г.И.
RU2235102C1
Ворончихин В.Д., Дубков К.А., Иванова Д.П
и др
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
- Известия вузов
Химия и химическая технология, 2009, т.52, вып.1, с.94-97.

RU 2 442 796 C1

Авторы

Золотарев Валентин Лукьянович

Марков Борис Александрович

Ярцева Татьяна Александровна

Малыгин Алексей Викторович

Рачинский Алексей Викторович

Авдеенко Николай Александрович

Мазина Людмила Анатольевна

Семиколенов Сергей Владимирович

Дубков Константин Александрович

Гусев Александр Викторович

Даты

2012-02-20Публикация

2010-12-03Подача