СПОСОБ ГИДРИРОВАНИЯ ОЛЕФИНОВ И КИСЛОРОДСОДЕРЖАЩИХ СОЕДИНЕНИЙ В СОСТАВЕ СИНТЕТИЧЕСКИХ ЖИДКИХ УГЛЕВОДОРОДОВ, ПОЛУЧЕННЫХ ПО МЕТОДУ ФИШЕРА-ТРОПША, И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2012 года по МПК C07C1/22 C07C5/02 C07C9/00 C10G49/06 C10G45/10 C10G45/40 C10G69/02 B01J32/00 B01J23/44 C10G2/00 

Описание патента на изобретение RU2446136C1

Изобретение относится к газохимии и газопереработке, а именно к технологии получения синтетических насыщенных углеводородов путем гидрирования фракций, выделенных из продуктов синтеза Фишера-Тропша.

Легкие фракции, выделенные из синтетических жидких углеводородов (СЖУ), полученных по методу Фишера-Тропша, наряду с насыщенными парафиновыми углеводородами нормального и изостроения содержат ненасыщенные углеводороды. Для того чтобы использовать фракции, соответствующие бензиновым, в качестве компонента или исходного сырья для получения автомобильных топлив в процессах изомеризации, ароматизации и т.д., необходимо подвернуть гидрированию ненасыщенные и кислородсодержащие соединения.

Известен способ получения жидких углеводородов в процессе превращения синтез-газа по методу Фишера-Тропша. Процесс каталитической конверсии синтез-газа осуществляется при температуре 220-270°С, давлении 0,1-5,0 МПа, объемной скорости 50-5000 час-1 на кобальтовом катализаторе, нанесенном на носитель, содержащий оксид алюминия и цеолит (Патент GB 2 211 20,1988).

Недостатком способа является низкий выход целевых продуктов, причем данный способ обеспечивает получение только промежуточного продукта, а не конечного в виде товарного топлива.

Известен способ получения углеводородного топлива из продуктов процесса синтеза углеводородов из монооксида углерода и водорода путем контактирования продуктов с водородом в присутствии катализатора гидроконверсии. Стадию гидроконверсии проводят в две ступени: на первой ступени проводят контактирование углеводородного продукта с водородом в присутствии катализатора в таких условиях, при которых происходит гидрирование и, по существу, не происходит изомеризация или гидрокрекинг продукта, а на второй ступени проводят контактирование, по крайней мере, части углеводородного продукта первой ступени с водородом в присутствии катализатора гидроконверсии в таких условиях, при которых происходит гидрокрекинг и изомеризация углеводородного продукта с получением углеводородного топлива, содержащего, в основном, парафиновые углеводороды (Патент RU 2101324, 1998).

Недостатком приведенного способа является отсутствие стадии предварительного разделения полученной смеси синтетических углеводородов на фракции, так как распределение олефинов в продуктах синтеза Фишера-Тропша неравномерно и снижается с увеличением числа углеродных атомов в углеводородах.

Наиболее близким к способу гидрирования синтетических жидких олефинов является способ получения реактивного и дизельного топлив из продуктов синтеза Фишера-Тропша путем их предварительного разделения на фракции (выкипающую до 260°С и выкипающую выше 260°С) и раздельного гидрирования и изомеризации легкой фракции и изомеризации тяжелой фракции. На стадии гидрирования использовались сульфидированные алюмоникельмолибденовые катализаторы и алюмоникелевые катализаторы (Патент US 5378348, 03.01.1995).

К недостаткам способа относится неэффективное использование предварительной стадии гидрирования для получения реактивного и дизельного топлива путем гидрирования и изомеризации фракции, выкипающей ниже 260°С. Подобные каталитические системы малоэффективны при гидрировании широких фракций.

Наиболее близким техническим решением по катализатору для гидрирования продуктов синтеза Фишера-Тропша является катализатор, содержащий никель, платину или палладий, нанесенные на диатомиты, магнийсиликаты или активированный уголь (Патент ЕР 1927643, 2008).

Недостатком приведенных катализаторов является их низкая эффективность при объемных скоростях более 1 час-1 в процессе гидрирования продуктов синтеза Фишера-Тропша.

Целью изобретения является получение насыщенных углеводородов из жидких продуктов синтеза Фишера-Тропша, представляющих собой сложную смесь парафиновых углеводородов с числом углеродных атомов от 5 до 32 с соотношением нормальных парафиновых углеводородов к изопарафиновым - от 1:1 до 7:1, содержащих до 50% олефинов и до 5% кислородсодержащих соединений.

Технической задачей, решаемой настоящим изобретением, является использование фракций, соответствующих бензиновым, выделенных из смеси синтетических жидких углеводородов, полученных по методу Фишера-Тропша, предварительно подвергнутых гидрированию, в качестве компонента или исходного сырья для получения автомобильных топлив в процессах изомеризации и ароматизации.

Данная техническая задача и указанная цель достигаются путем разделения жидких продуктов, полученных в ходе синтеза Фишера-Тропша, каталитического гидрирования выделенных легких фракций: н.к. -85°С и 85-140°С или н.к. -140°С (где н.к. - начало кипения при нормальных условиях) на стационарном слое катализатора, содержащем 0,2-2,5 мас.% палладия, нанесенного на носитель, представляющий собой γ-оксид алюминия, содержание примесей посторонних металлов в котором не превышает 1500 ppm, с преимущественным эффективным радиусом пор от 4,0 до 10,0 нм, при температуре 100-250°С, давлении водорода 1,5-5,0 МПа, объемной скорости подачи сырья 0,2-10,0 час-1 и соотношении водород: сырье 200-2000:1 нл/л.

Указанные отличительные признаки существенны.

Для того чтобы использовать фракции, соответствующие бензиновым, в качестве компонента или исходного сырья для получения автомобильных топлив в процессах изомеризации, ароматизации и др. необходимо подвернуть гидрированию ненасыщенные и кислородсодержащие соединения.

Выделение ректификацией легких фракций: н.к. -85°С и 85-140°С или н.к. -140°С, содержащих ненасыщенные углеводороды, позволяет провести их раздельное гидрирование на специфическом катализаторе, обеспечивающем эффективность процесса именно для этих фракций. По мере увеличения пределов выкипания фракций содержание олефинов и кислородсодержащих соединений уменьшается, так как их распределение в продуктах синтеза Фишера-Тропша неравномерно и снижается с увеличением числа углеродных атомов в углеводородах. Заявленные режимы гидрирования в присутствии заявленного катализатора обеспечивают наибольшую полноту получения насыщенных синтетических углеводородов, не содержащих олефинов.

Способ реализуют следующим образом.

Полученные в результате синтеза Фишера-Тропша продукты, имеющие вид синтетических жидких углеводородов, представляющие собой сложную смесь парафиновых углеводородов с числом углеродных атомов от 5 до 32, с отношением нормальных парафиновых углеводородов к изопарафиновым -1-7:1, содержащие до 50% олефинов и до 5% кислородсодержащих соединений, разделяют на фракции: н.к. -85°С и 85-140°С или н.к. -140°С. Выделенную фракцию, содержащую олефины и кислородсодержащие соединения, подвергают каталитическому гидрированию при температуре 100-250°С, давлении водорода 1,5-5,0 МПа, объемной скорости подачи сырья 0,2-10,0 час-1 и соотношении водород:сырье 200-2000:1 нл/л. Для гидрирования используют катализатор, содержащий 0,2-2,5 мас.% палладия, нанесенного на носитель, представляющий собой γ-оксид алюминия, содержание примесей металлов в котором не превышает 1500 ppm и с преимущественным эффективным радиусом пор от 4,0 до 10,0 нм.

Ниже приведены примеры 1-4, иллюстрирующие способ гидрирования олефинов и кислородсодержащих соединений, а также примеры 5-7, демонстрирующие технологию приготовления катализатора для осуществления способа гидрирования олефинов и кислородсодержащих соединений в составе синтетических жидких углеводородов, полученных по методу Фишера-Тропша.

В таблице 1 указаны результаты гидрирования по приведенным примерам 1-4 реализации способа.

Пример 1

Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции н.к. -85°С, содержащей 50% олефинов и 5% кислородсодержащих соединений. Полученную фракцию подвергают гидрированию в присутствии водорода при температуре 250°С и давлении 5,0 МПа, объемной скорости подачи сырья 0,2 час-1. Соотношение водород:сырье поддерживают равным 2000:1 нл/л. Гидрирование проводят в присутствии катализатора, содержащего в качестве каталитически активного компонента палладий в количестве 2,5 мас.%. В качестве носителя катализатора используют пористый γ-оксид алюминия со средним размером пор 4,0 нм, содержание примесей посторонних металлов в котором не превышает 1500 ррm.

Пример 2

Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 85-140°С, содержащей 30% олефинов и 3% кислородсодержащих соединений. Полученную фракцию подвергают гидрированию в присутствии водорода при температуре 200°С и давлении 3,0 МПа, объемной скорости подачи сырья 5 час-1. Соотношение водород:сырье поддерживают равным 500:1 нл/л. Гидрирование проводят в присутствии катализатора, содержащего в качестве каталитически активного компонента палладий в количестве 1 мас.%. В качестве носителя катализатора используют пористый γ-оксид алюминия со средним размером пор 10,0 нм, содержание примесей посторонних металлов в котором не превышает 1500 ррm.

Пример 3

Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции н.к. -140°С, содержащей 40% олефинов и 4% кислородсодержащих соединений. Полученную фракцию подвергают гидрированию в присутствии водорода при температуре 220°С и давлении 4 МПа, объемной скорости подачи сырья 7,5 час-1. Соотношение водород: сырье поддерживают равным 600:1 нл/л. Гидрирование проводят в присутствии катализатора, содержащего в качестве каталитически активного компонента палладий в количестве 1,1 мас.%. В качестве носителя катализатора используют пористый γ-оксид алюминия со средним размером пор 6,0 нм, содержание примесей посторонних металлов в котором не превышает 1500 ррm.

Пример 4

Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции н.к. -140°С, содержащей 15% олефинов и 1,5% кислородсодержащих соединений. Полученную фракцию подвергают гидрированию в присутствии водорода при температуре 100°С и давлении 1,5 МПа, объемной скорости подачи сырья 10 час-1. Соотношение водород:сырье поддерживают равным 200:1 нл/л. Гидрирование проводят в присутствии катализатора, содержащего в качестве каталитически активного компонента палладий в количестве 0,2 мас.%. В качестве носителя катализатора используют пористый γ-оксид алюминия со средним размером пор 6,0 нм, содержание примесей посторонних металлов в котором не превышает 1500 ррm.

Пример 5

128,9 г порошка гидроксида алюминия, содержание примесей посторонних металлов в котором не превышает 1500 ppm, сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют водным раствором раствора азотной кислоты, взятой в таком количестве, чтобы рН пептизированной массы соответствовал 4,5. Полученную массу тщательно перемешивают, упаривают до влажности 70 мас.% и формуют в цилиндрические гранулы методом экструзии.

Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°С, 2 ч при 80°С, 2 ч при 120°С. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°С в течение 3 ч с подъемом температуры прокалки 50°С в час.

99,8 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,09 г хлористого палладия; 0,22 мл 98,5% концентрированной уксусной кислоты и 0,23 мл 37% концентрированной соляной кислоты.

Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°С в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.

Катализатор сушат в токе воздуха в течение 2 ч при 60°С, 2 ч при 80°С, 2 ч при 100°С, 2 ч при 120°С, 2 ч при 140°С.Полученный катализатор имеет радиус пор 6,0 нм. Содержание примесей посторонних металлов в катализаторе не превышает 1500 ррm.

Состав полученного катализатора, мас.%:

Палладий(Рd) 0,2 Оксид алюминия (γ-Al2O3) 99,8

Пример 6

127,9 г порошка гидроксида алюминия, содержание примесей посторонних металлов в котором не превышает 1500 ppm, сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют водным раствором раствора азотной кислоты, взятой в таком количестве, чтобы рН пептизированной массы соответствовал 5. Полученную массу тщательно перемешивают, упаривают до влажности 80 мас.% и формуют в цилиндрические гранулы методом экструзии.

Гранулы носителя подсушивают, сушат и прокаливают аналогично примеру 5.

99,0 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 1,679 г хлористого палладия; 1,15 мл 98,5% концентрированной уксусной кислоты и 1,18 мл 37% концентрированной соляной кислоты.

Пропитку носителя и сушку катализатора проводят аналогично примеру 5. Полученный катализатор имеет радиус пор 10,0 нм. Содержание примесей посторонних металлов в катализаторе не превышает 1500 ррm.

Состав полученного катализатора, мас.%:

Палладий(Pd) 1,0; Оксид алюминия (γ-Al2O3) 99,0.

Пример 7

125,9 г порошка гидроксида алюминия, содержание примесей посторонних металлов в котором не превышает 1500 ррm, сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют водным раствором раствора азотной кислоты, взятой в таком количестве, чтобы рН пептизированной массы соответствовал 4. Полученную массу тщательно перемешивают, упаривают до влажности 60 мас.% и формуют в цилиндрические гранулы методом экструзии.

Гранулы носителя подсушивают, сушат и прокаливают аналогично примеру 5.

97,5 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 4,198 г хлористого палладия; 2,87 мл (98,5%) концентрированной уксусной кислоты и 2,95 мл (37%) концентрированной соляной кислоты.

Пропитку носителя и сушку катализатора проводят аналогично примеру 5. Полученный катализатор имеет радиус пор 4,0 нм. Содержание примесей посторонних металлов в катализаторе не превышает 1500 ррm.

Состав полученного катализатора, мас.%:

Палладий(Рd) 2,5 Оксид алюминия (γ-Al2O3) 97,5

Физико-химические свойства синтетических фракций, подвергнутых гидрированию по примерам 1-4, приведены в таблице.

Наименование примеров Содержание олефинов, мас.% Содержание кислородсодержащих соединений, мас.% Выход
газообразных продуктов, мас.%
Пример 1 отсутствие отсутствие 0,3 Пример 2 отсутствие отсутствие отсутствие Пример 3 отсутствие отсутствие 0,2 Пример 4 отсутствие 0,1 отсутствие

Результаты, приведенные в таблице, подтверждают эффективность способа и предлагаемого катализатора для получения синтетических жидких углеводородов - продуктов синтеза Фишера-Тропша, не содержащих олефинов и кислородсодержащих соединений.

Похожие патенты RU2446136C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ ЖИДКИХ ТОПЛИВ ИЗ УГЛЕВОДОРОДНЫХ ГАЗОВ ПО МЕТОДУ ФИШЕРА-ТРОПША И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Логинова Анна Николаевна
  • Свидерский Сергей Александрович
  • Потапова Светлана Николаевна
  • Фадеев Вадим Владимирович
  • Михайлова Янина Владиславовна
RU2444557C1
СПОСОБ ГИДРООБРАБОТКИ ПРОДУКТА НИЗКОТЕМПЕРАТУРНОГО СИНТЕЗА ФИШЕРА-ТРОПША 2016
  • Лай, Бо
  • Ши, Юлян
  • Сюй, Ли
RU2650190C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ АВИАЦИОННЫХ ТОПЛИВ ИЗ УГЛЕВОДОРОДОВ, ПОЛУЧЕННЫХ ПО МЕТОДУ ФИШЕРА-ТРОПША, И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Логинова Анна Николаевна
  • Свидерский Сергей Александрович
  • Потапова Светлана Николаевна
  • Фадеев Вадим Владимирович
  • Михайлова Янина Владиславовна
  • Лысенко Сергей Васильевич
  • Герасимов Денис Николаевич
  • Круковский Илья Михайлович
  • Аксенов Михаил Сергеевич
RU2473664C1
Катализатор гидрирования олефинов в процессе получения синтетической нефти и способ его синтеза (варианты) 2017
  • Михайлов Михаил Николаевич
  • Григорьев Дмитрий Александрович
  • Бессуднов Алексей Эдуардович
  • Сандин Александр Васильевич
  • Джунгурова Гиляна Евгеньевна
  • Михайлов Сергей Александрович
RU2672269C1
Способ получения синтетической нефти 2017
  • Михайлов Михаил Николаевич
  • Григорьев Дмитрий Александрович
  • Протасов Олег Николаевич
  • Сандин Александр Васильевич
  • Джунгурова Гиляна Евгеньевна
  • Михайлов Сергей Александрович
RU2656601C1
СПОСОБ ПОЛУЧЕНИЯ СРЕДНИХ ДИСТИЛЛЯТОВ ГИДРОИЗОМЕРИЗАЦИЕЙ И ГИДРОКРЕКИНГОМ ТЯЖЕЛОЙ ФРАКЦИИ, ВЫДЕЛЯЕМОЙ ИЗ СМЕСИ, ПОЛУЧАЕМОЙ СИНТЕЗОМ ФИШЕРА-ТРОПША 2008
  • Маршаль-Жорж Натали
  • Козен Жан
  • Купар Венсан
  • Капрани Эрик
  • Дузьеш Дамьен
  • Данде Орели
  • Феду Стефан
RU2469069C2
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА ИЗ ТВЕРДЫХ СИНТЕТИЧЕСКИХ УГЛЕВОДОРОДОВ, ПОЛУЧЕННЫХ ПО МЕТОДУ ФИШЕРА-ТРОПША, И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Логинова Анна Николаевна
  • Свидерский Сергей Александрович
  • Потапова Светлана Николаевна
  • Фадеев Вадим Владимирович
  • Михайлова Янина Владиславовна
  • Лысенко Сергей Васильевич
  • Герасимов Денис Николаевич
  • Круковский Илья Михайлович
  • Аксенов Михаил Сергеевич
RU2493237C2
СПОСОБ ПОЛУЧЕНИЯ СРЕДНИХ ДИСТИЛЛЯТОВ И ОСНОВ ДЛЯ СМАЗКИ, ИСХОДЯ ИЗ СИНТЕТИЧЕСКОГО УГЛЕВОДОРОДНОГО СЫРЬЯ 2004
  • Калемма Винченцо
  • Флего Кристина
  • Карлуччио Лучано Козимо
  • Паркер Уоллес
  • Джардино Роберто
  • Фарачи Джованни
RU2345123C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА 1993
  • Якобус Эйлерс[Nl]
  • Ситзе Абель Постюма[Nl]
RU2101324C1
СПОСОБ ГИДРООЧИСТКИ ОСНОВЫ ДЛЯ ТОПЛИВА 2007
  • Секи Хироюки
  • Конно Хирофуми
RU2429278C2

Реферат патента 2012 года СПОСОБ ГИДРИРОВАНИЯ ОЛЕФИНОВ И КИСЛОРОДСОДЕРЖАЩИХ СОЕДИНЕНИЙ В СОСТАВЕ СИНТЕТИЧЕСКИХ ЖИДКИХ УГЛЕВОДОРОДОВ, ПОЛУЧЕННЫХ ПО МЕТОДУ ФИШЕРА-ТРОПША, И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к катализатору для осуществления способа гидрирования олефинов и кислородсодержащих соединений в составе синтетических жидких углеводородов, полученных по методу Фишера-Тропша, содержащему пористый носитель из γ-оксида алюминия с нанесенным на него каталитически активным компонентом - палладием, характеризующемуся тем, что поры носителя имеют эффективный радиус от 4,0 до 10,0 нм, причем содержание примесей посторонних металлов в носителе не превышает 1500 ррм, а содержание палладия в катализаторе составляет 0,2-2,5 мас.%. Также изобретение относится к способу гидрирования, использующему данный катализатор. Изобретение позволяет получать насыщенные углеводороды из жидких продуктов синтеза Фишера-Тропша, представляющих собой сложную смесь парафиновых углеводородов с числом углеродных атомов от 5 до 32, с соотношением нормальных парафиновых углеводородов к изопарафиновым - от 1:1 до 7:1, содержащих до 50% олефинов и до 5% кислородсодержащих соединений. 2 н.п.ф-лы, 1 табл., 7 пр.

Формула изобретения RU 2 446 136 C1

1. Способ гидрирования олефинов и кислородсодержащих соединений в составе синтетических жидких углеводородов, полученных по методу Фишера-Тропша, включающий выделение из синтезированных жидких продуктов легких фракций, содержащих олефины и кислородсодержащие соединения и их каталитическое гидрирование, отличающийся тем, что легкие фракции: н.к. - 85°С и 85-140°С или н.к. -140°С выделяют из смеси синтетических жидких углеводородов ректификацией, а гидрирование проводят на стационарном слое катализатора по п.2 при температуре 100-250°С, давлении водорода 1,5-5,0 МПа, объемной скорости подачи сырья 0,2-10,0 ч-1 и соотношении водород: сырье - 200-2000: 1 нл/л.

2. Катализатор для осуществления способа гидрирования олефинов и кислородсодержащих соединений в составе синтетических жидких углеводородов, полученных по методу Фишера-Тропша, содержащий пористый носитель из γ-оксида алюминия с нанесенным на него каталитически активным компонентом-палладием, отличающийся тем, что поры носителя имеют эффективный радиус от 4,0 до 10,0 нм, причем содержание примесей посторонних металлов в носителе не превышает 1500 млн-1, а содержание палладия в катализаторе составляет 0,2-2,5 мас.%.

Документы, цитированные в отчете о поиске Патент 2012 года RU2446136C1

ЕР 1927643 А1, 04.06.2008
US 5378348 A, 03.01.1995
RU 2007143489 A, 10.06.2009.

RU 2 446 136 C1

Авторы

Логинова Анна Николаевна

Свидерский Сергей Александрович

Лысенко Сергей Васильевич

Фадеев Вадим Владимирович

Герасимов Денис Николаевич

Круковский Илья Михайлович

Аксенов Михаил Сергеевич

Даты

2012-03-27Публикация

2010-09-30Подача