Изобретение относится к нефтехимической промышленности, а именно к получению полиэтилена радикальной полимеризацией этилена при высоком давлении и температуре в трехзонном реакторе трубчатого типа.
Известен способ полимеризации этилена в трехзонном реакторе по примеру 1 [US 2006/0149004 А1]. В качестве среднетемпературного инициатора в первой зоне использовалась смесь 6.073 mol % кислорода и трет-бутилперокси-2-этилгексаноата как среднетемпературного инициатора, и 2.927 mol % ди- трет-бутилпероксида как высокотемпературного инициатора. Во второй зоне использовалась смесь тех же инициаторов, но с другим соотношением, как среднетемпературный инициатор. В третьей зоне использовался только высокотемпературный инициатор ди-трет-бутилпероксид.
Недостатком вышеприведенного способа полимеризации является получение полиэтилена с узким молекулярно-массовым распределением - полидисперсность 11,98 и степенью конверсии этилена 27,65%. Полимер с такими характеристиками не оптимален для получения пленочных марок полиэтилена, так как известно, что для переработки в пленку необходим полиэтилен с широким молекулярно-массовым распределением [Encyclopedia of Polymer Science and Technology. Copyright John Wiley & Sons, Inc. 2008. Vol.2. P.494].
В заявке [US 2006/01671193 A1] описан способ получения полиэтилена в трубчатом реакторе с высоким давлением - 2900 бар, имеющим 3 реакционные зоны, инициаторы вводились в начало каждой зоны. В данном изобретении смесь 5 различных типов инициаторов вводилась в каждом примере; композиции этих смесей были оптимизированы на основе контроля параметров температуры, давления и количества пероксидов. Типы инициаторов характеризовались их полураспадом и значением температур.
Недостатком данного способа является относительно низкая конверсия этилена (28,8%) для реакторов такого типа. Известно, что в реакторах такого типа (с давлением около 2900 бар) конверсия этилена достигает обычно 35% [PolyOlefins Planning Service (POPS) Technology review. June 2005. Chemsystems]. Низкая конверсия по способу [US 2006/01671193 A1] обусловлена неэффективной загрузкой первой зоны реактора вследствие подачи в нее только инициаторов с низкой температурой разложения.
Наиболее близким техническим решением к заявляемому способу является способ, описанный в [SU 1838331 A3]. В примере 1 приведен способ проведения полимеризации в реакторе аналогичной конструкции, с таким же давлением и с тремя зонами ввода инициатора, как и в предлагаемом изобретении.
На входе в первую зону к содержащему кислород этилену добавляют раствор смеси пероксидов, состоящий из 200 кг бис-2,4,5-триметилгексаноилперекиси (низкотемпературный пероксид) и 50 кг трет-бутилпербензоата (среднетемпературный пероксид) в 1000 л парафинового масла. Во вторую и третью зоны реактора подают указанную смесь пероксидов, при этом необходимый температурный режим в реакторе поддерживают подачей холодного этилена, смешанного с различным количеством кислорода. Количество кислорода и указанной смеси пероксидов рассчитывают таким образом, чтобы обеспечить необходимое приращение энтальпии.
Недостатком способа по [SU 1838331 A3] является недостаточно высокая конверсия этилена (26,6% в примере 1, 25,2% в примере 2, 26,6% в примере 3, 25,5% в примере 5) и низкое значение полидисперсности получаемого полиэтилена 7,5-11,0.
Задачей настоящего изобретения является максимально быстрое повышение температуры реакционной среды за счет поддержания высоких значений градиента температур, что обеспечивает разогрев реакционной среды на минимальной длине начального участка в каждой из зон реактора.
Техническим результатом изобретения является повышение конверсии этилена (до 28,5%) в промышленном трехзонном реакторе при высокой температуре и высоком давлении (выше 200 МПа) без внесения изменений в конструкцию реактора, которые требуют существенных капитальных вложений.
Еще один технический результат - увеличение значения полидисперсности получаемого полиэтилена.
Поставленная задача достигается тем, что, как и в известном, в предлагаемом способе полимеризацию этилена проводят при высокой температуре и давлении выше 200 МПа в трехзонном реакторе трубчатого типа при смешанном инициировании кислородом и органическими пероксидами, подаваемыми в виде растворов в органическом растворителе.
Новым является то, что в первой и во второй зоне реактора в качестве инициатора используют кислород и раствор смеси трех пероксидов - низко-, средне- и высокотемпературного, а в третьей зоне смесь кислорода и раствор высокотемпературного пероксида, при этом используют пероксиды, у которых температура максимальной эффективности инициирования достигается при температурах, отличающихся на 35-40°C, а температура максимальной эффективности инициирования самого низкотемпературного пероксида относительно температуры потока реакционной среды не должна превышать 20°C.
Кроме того, в первой и во второй зоне реактора в качестве инициатора используют смесь кислорода и раствор смеси трех пероксидов - низко-, средне- и высокотемпературного при массовом соотношении пероксидов в смеси, равном 32,5÷33,5%; 21,5÷22,5% и 44,5÷45,5%. Приведенные в мас.% количества указаны в пересчете на общую массу смеси и в каждом случае в сумме должны составлять 100 мас.%.
Для достижения максимальной конверсии этилена в трубчатых реакторах необходимо поддерживать температуру 310÷315°C. Достижение данной температуры в реакторе осуществляется за счет экзотермического эффекта реакции полимеризации этилена. Дальнейшее повышение температуры приведет к разложению образовавшегося полиэтилена, поэтому в конструкции реакторов предусмотрено охлаждение. Недостаточно высокая температура в реакторе (менее 310°C) приводит к снижению скорости реакции полимеризации, что выражается в низкой конверсии этилена. Таким образом, для достижения максимальной конверсии необходимо обеспечить максимально быстрое повышение температуры реакционной среды от 160÷170°C (температура этилена при вводе в первую и вторую зону реакции) до 310÷315°C на максимально коротком участке реактора. Данный результат достигается за счет использования смеси трех пероксидов с различной температурой разложения. Для инициирования начала реакции используется низкотемпературный пероксид, температура максимальной эффективности инициирования которого должна быть не более чем на 20°C выше, чем температура этилена, подаваемого в первую зону реактора. Данное условие необходимо для полного распада пероксида в заданной зоне реактора. Если распад пероксида происходит раньше заданного, то зона реакции сокращается, концентрация образовавшихся в этой зоне радикалов возрастает, а эффективность инициирования снижается. Если температура максимальной эффективности инициирования более чем на 20°C превышает температуру потока реакционной среды, то часть пероксида не будет участвовать в инициировании процесса в заданной зоне реакции, а будет выноситься потоком реакционной среды или в последующую зону или из реактора. Дальнейшее поддержание скорости реакции и температуры в реакционной зоне достигается тем, что после полного разложения низкотемпературного пероксида реакция полимеризации инициируется за счет разложения среднетемпературного пероксида, а затем - высокотемпературного пероксида. Это условие соблюдается при использовании в смеси пероксидов с температурами максимальной эффективности инициирования, различающейся на 35÷40°C. Количество же каждого пероксида в смеси подбирается таким образом, чтобы температура потока реакционной среды в конце зоны инициирования низко- и среднетемпературным пероксидами была на 20°C выше температуры их максимальной эффективности инициирования. Количество высокотемпературного пероксида должно обеспечить достижение температуры потока реакционной среды 310÷315°C. В начале третьей зоны реактора температура реакционной среды составляет 270÷280°C, поэтому в третью зону реактора вводится только высокотемпературный пероксид.
Подача кислорода в первую и вторую зоны реактора составляет 18÷21 мас.% от количества смеси пероксидов, а подача кислорода в третью зону реактора составляет 58÷60 мас.% от количества высокотемпературного пероксида. Соотношение количества пероксидов и кислорода подбирается таким образом, чтобы обеспечить инициирование реакции полимеризации за счет распада всех пероксидов и достижение заданной температуры процесса в каждой из зон реактора.
В качестве органических пероксидов могут быть использованы следующие пероксиды:
- в качестве низкотемпературного пероксида - трет-бутил-пероксипивалат, трет-бутилпероксинеодеканоат, ди-(3,5,5,триметилгексаноил)пероксид, трет-бутилпероксипивалоат, трет-бутилперокси-2-этилгексаноат, трет-бутилпероксибензоат или их смеси;
- в качестве среднетемпературного трет-бутил-пероксибензоат, перекись дикумила, 2,2-ди(трет-бутилперокси)бутан,трет-бутилперокси-3,5,5 триметилгексаноат или их смеси;
- в качестве высокотемпературного - 2.5-диметил-2.5-ди(трет-бутил-перокси)гексан, ди-трет-бутилпероксид, 3,6,9-триэтил-3,6,9-триметил-1,4,7-три-пероксонан или их смеси.
В качестве органического растворителя для пероксидов могут быть использованы растворители, выбранные из группы минеральных масел, парафинов нормального и изостроения, циклических углеводородов, например декан, пентадекан, изододекан, изогексадекан или их смеси.
Предпочтительно, что в качестве органического растворителя используют белые масла.
Количество пероксидов в белых маслах должно обеспечивать максимально достижимую концентрацию их при сохранении истинного раствора.
В дальнейшем изобретение подтверждается примерами его конкретного выполнения.
Пример 1. Получение полиэтилена осуществляли в промышленном трубчатом реакторе с тремя зонами реакции, отличающимися следующими размерами длины и диаметра: реакционная зона 1 - L=525 м, d=40, реакционная зона 2 - L=337 м, d=60, реакционная зона 3 - L=450 м, d=60, проводили полимеризацию этилена, который содержал (расход пропилена 2,2 м3/час) 0,007 мас.% пропилена в качестве регулятора цепи с кислородом (расход кислорода 890 литров/час, 1,271 кг/час) 0,0022 мас.% и органическими пероксидами при давлении на входе в реактор 210 МПа. Исходный газ разделялся на три потока 28, 14, 14 т/час. Каждая из трех реакционных зон имеет охлаждающую рубашку, через которую постоянно циркулирует охлаждающая вода с температурой на входе 185°С.
Предварительно готовили смесь инициаторов, состоящую из:
- 33,3 мас.% низкотемпературного пероксида - трет-бутилпероксибензоат (Триганокс С) с температурой максимальной эффективности инициирования 185°С,
- 22,2 мас.% среднетемпературного пероксида - трет-бутилперокси-3,5,5 триметилгексаноат (Триганкс 42S) с температурой максимальной эффективности инициирования 225°С и
- 44,5 мас.% высокотемпературного пероксида - ди-трет-бутилпероксид (Триганокс В) с температурой максимальной эффективности инициирования 260°С.
Полученную смесь инициаторов разбавляли белым минеральным маслом для получения раствора смеси инициаторов со следующим содержанием компонентов:
- 9 мас.% низкотемпературного пероксида - трет-бутилпероксибензоат (Триганокс С);
- 6 мас.% среднетемпературного пероксида - трет-бутилперокси-3,5,5 триметилгексаноат (Триганкс 42S);
- 12 мас.% высокотемпературного пероксида - ди-трет-бутилпероксид (Триганокс В);
- белое минеральное масло до 100%.
Первый поток исходного газа (28 т/час) подогревают в теплообменнике до температуры 170°С и вводят при этой температуре в первую зону реакции. На входе в первую зону реакции в исходный газ добавляют 7,2 кг/час подготовленного раствора смеси инициатора в белых минеральных маслах и 0,389 кг/час кислорода. Таким образом, достигается максимальная температура в первой зоне реакции 310°С.
Затем в выходящую из первой зоны реакции смесь газа добавляют поток холодного газа (14 т/час), который содержит 0,466 кг/час кислорода. Температура смешения 170°С. После смешения обоих потоков добавляют 6,4 кг/час той же смеси инициатора, содержащего пероксиды, как и в первой зоне реакции. Таким образом, достигается максимальная температура во второй зоне реакции 315°С.
В реакционную смесь, выходящую из второй зоны реакции, снова добавляют поток холодного газа (14 т/час), который содержит 0,416 кг/час кислорода. Температура смешения 280°С.
После смешения потоков добавляют 5,0 кг/час раствора инициатора, содержащего 6 мас.% высокотемпературного пероксида - ди-трет-бутилпероксид (Триганокс В) с температурой максимальной эффективности инициирования 260°С в белых маслах. Достигнутая максимальная температура составляет 315°С.
Затем реакционную смесь охлаждают в продуктовых холодильниках, отделяют непрореагировавший полиэтилен от полимеризата и после прохождения нескольких ступеней охлаждения и очистки непрореагировавший этилен отправляют снова в реактор вместе со свежим этиленом. Образовавшийся полимер разгружают через отделитель низкого давления.
Степень превращения этилена составляет 28,5%. Полимер имеет (обладает) полидисперсностью 18.
Пример 2. Проводят аналогично примеру 1 со следующими изменениями:
Первый поток исходного газа (28 т/час) подогревают в теплообменнике до температуры 150°С и вводят при этой температуре в первую зону реакции.
Затем в выходящую из первой зоны реакции смесь газа добавляют поток холодного газа (14 т/час), который содержит 0,466 кг/час кислорода. Температура смешения 150°С.
Степень превращения этилена составляет 24%. Полимер имеет (обладает) полидисперсностью 11.
Пример 3. Проводят аналогично примеру 1 со следующими изменениями:
Предварительно готовили смесь инициаторов, состоящую из:
- 33,3 мас.% низкотемпературного пероксида - трет-бутилпероксибензоат (Триганокс С),
22,2 мас.% среднетемпературного пероксида - 2,5-диметил-2,5-ди(трет-бутил-перокси)гексан с температурой максимальной эффективности инициирования 240°С и
- 44,5 мас.% высокотемпературного пероксида - ди-трет-бутилпероксид (Триганокс В) с температурой максимальной эффективности инициирования 260°С.
Полученную смесь инициаторов разбавляли белым минеральным маслом для получения раствора смеси инициаторов с содержанием компонентов:
- 9 мас.% низкотемпературного пероксида - трет-бутилпероксибензоат (Триганокс С) с температурой максимальной эффективности инициирования 185°С;
- 6 мас.% среднетемпературного пероксида - 2,5-диметил-2,5-ди(трет-бутил-перокси)гексан;
- 12 мас.% высокотемпературного пероксида - ди-трет-бутилпероксид (Триганокс В);
- белое минеральное масло до 100%.
На входе в первую зону реакции в исходный газ добавляют 7,2 кг/час подготовленного раствора смеси инициатора в белых минеральных маслах и 0,389 кг/час кислорода.
Степень превращения этилена составляет 25%. Полимер имеет (обладает) полидисперсностью 11.
Пример 4.
Проводят аналогично примеру 1 со следующими изменениями:
Предварительно готовили смесь инициаторов, состоящую из:
- 29,6 мас.% низкотемпературного пероксида - трет-бутилпероксибензоат (Триганокс С) с температурой максимальной эффективности инициирования 185°С,
- 25,9 мас.% среднетемпературного пероксида - трет-бутилперокси-3,5,5 триметилгексаноат (Триганкс 42S) с температурой максимальной эффективности инициирования 225°С и
- 44,5 мас.% высокотемпературного пероксида - ди-трет-бутилпероксид (Триганокс В) с температурой максимальной эффективности инициирования 260°С.
Полученную смесь инициаторов разбавляли белым минеральным маслом для получения раствора смеси инициаторов с содержанием компонентов:
- 8 мас.% низкотемпературного пероксида - трет-бутилпероксибензоат (Триганокс С);
- 7 мас.% среднетемпературного пероксида - трет-бутилперокси- 3,5,5 триметилгексаноат (Триганкс 42S);
- 12 мас.% высокотемпературного пероксида - ди-трет-бутилпероксид (Триганокс В);
- белое минеральное масло до 100%.
На входе в первую зону реакции в исходный газ добавляют 7,2 кг/час подготовленного раствора смеси инициатора в белых минеральных маслах и 0,389 кг/час кислорода. Таким образом, достигается максимальная температура в первой зоне реакции 310°С.
Степень превращения этилена составляет 26%. Полимер имеет (обладает) полидисперсностью 12.
Пример 5. Проводят аналогично примеру 1 со следующими изменениями:
Первый поток исходного газа (28 т/час) подогревают в теплообменнике до температуры 170°С и вводят при этой температуре в первую зону реакции. На входе в первую зону реакции в исходный газ добавляют 7,2 кг/час раствора смеси инициатора, состоящего из 9 мас.% низкотемпературного пероксида - трет-бутилпероксибензоат (Триганокс С) с температурой максимальной эффективности инициирования 185°С, 6 мас.% среднетемпературного пероксида - трет-бутилперокси-3,5,5 триметилгексаноат (Триганкс 42S) с температурой максимальной эффективности инициирования 225°С, 12 мас.% высокотемпературного пероксида - ди-трет-бутилпероксид (Триганокс В) с температурой максимальной эффективности инициирования 260°С в белых маслах и 0,457 кг/час кислорода. Таким образом, достигается максимальная температура в первой зоне реакции 310°С.
Затем в выходящую из первой зоны реакции смесь газа добавляют поток холодного газа (14 т/час), который содержит 0,534 кг/час кислорода. Температура смешения 170°С. После смешения обоих потоков добавляют 6,4 кг/час той же смеси инициатора, содержащего пероксиды, как и в первой зоне реакции. Таким образом, достигается максимальная температура во второй зоне реакции 315°С.
В реакционную смесь, выходящую из второй зоны реакции, снова добавляют поток холодного газа (14 т/час), который содержит 0,280 кг/час кислорода. Температура смешения 280°С.
После смешения потоков добавляют 5,0 кг/час раствора инициатора, содержащего 6 мас.% высокотемпературного пероксида - ди-трет-бутилпероксид (Триганокс В) с температурой максимальной эффективности инициирования 260°С в белых маслах. Достигнутая максимальная температура составляет 315°С.
Степень превращения этилена составляет 25%. Полимер имеет (обладает) полидисперсностью 12.
Пример 6 (по прототипу). Получение полиэтилена осуществляли в промышленном трубчатом реакторе с тремя зонами реакции, отличающимися следующими размерами длины и диаметра: реакционная зона 1 - L=525 м, d=40, реакционная зона 2-L=337 м, d=60, реакционная зона 3 - L=450 м, d=60, проводили полимеризацию этилена, который содержал (расход пропилена 2.2. м3/час) 0,007 мас.% пропилена в качестве регулятора цепи с кислородом (расход кислорода 890 литров/час, 1,271 кг/час) 0,0022 мас.% и органическими пероксидами при давлении на входе в реактор 210 МПа. Исходный газ разделялся на три потока 28, 14, 14 т/час. Каждая из трех реакционных зон имеет охлаждающую рубашку, через которую постоянно циркулирует охлаждающая вода с температурой на входе 185°С.
Первый поток исходного газа (28 т/час) подогревают в теплообменнике до температуры 170°С и вводят при этой температуре в первую зону реакции. На входе в первую зону реакции в исходный газ добавляют 7,2 кг/час раствора смеси инициатора, состоящего из 9 мас.% низкотемпературного пероксида - трет-бутилпероксибензоат (Триганокс С) с температурой максимальной эффективности инициирования 185°С и 6 мас.% среднетемпературного пероксида - трет-бутилперокси-3,5,5 триметилгексаноат (Триганкс 42S) с температурой максимальной эффективности инициирования 225°С в белых маслах и 0,389 кг/час кислорода. Достигается максимальная температура в первой зоне реакции 310°С.
Затем в выходящую из первой зоны реакции смесь газа добавляют поток холодного газа (14 т/час), который содержит 0,466 кг/час кислорода. Температура смешения 170°С. После смешения обоих потоков добавляют 6,4 кг/час той же смеси инициатора, содержащего пероксиды, как и в первой зоне реакции. Достигается максимальная температура во второй зоне реакции 315°С.
В реакционную смесь, выходящую из второй зоны реакции, снова добавляют поток холодного газа (14 т/час), который содержит 0,416 кг/час кислорода. Температура смешения 280°С.
После смешения потоков добавляют 5,0 кг/час раствора смеси инициаторов, содержащего пероксиды, как и в первой зоне реакции. Достигнутая максимальная температура составляет 315°С.
Степень превращения этилена составляет 26,5%. Полимер имеет (обладает) полидисперсностью 11.
Приведенные примеры уточняют изобретение, не ограничивая его.
На фиг.1 приведены профили (эпюры) температур реакционной среды и теплоносителя по зонам промышленного трубчатого реактора (ООО «Томскнефтехим»):
1 - процесс, в котором использована смесь пероксидов по прототипу;
2 - процесс, в котором использована смесь по предлагаемому в настоящем изобретении способу получения полиэтилена (пример 1).
Максимальная температура реакционной среды 310÷315°С по предлагаемому способу достигается на более коротком участке реактора (2) по сравнению с прототипом (1), что способствует увеличению выхода продукта на 1,9% (достижение конверсии 28,5%).
Как видно из примеров при использовании предлагаемого способа, увеличивается не только конверсия, но и полидисперсность, например, в примере 1 она достигает 18%. Полимер с такими характеристиками оптимален для получения пленочных марок полиэтилена, так как известно, что для переработки в пленку необходим полиэтилен с широким молекулярно-массовым распределением [Encyclopedia of Polymer Science and Technology. Copyright John Wiley & Sons, Inc. 2008. Vol.2. P.494].
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭТИЛЕНА | 2000 |
|
RU2176249C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭТИЛЕНА | 2004 |
|
RU2255095C1 |
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРОВ ЭТИЛЕНА С ВИНИЛАЦЕТАТОМ В ОДНОЗОННОМ АВТОКЛАВНОМ РЕАКТОРЕ | 2014 |
|
RU2576035C1 |
СПОСОБ ПОЛУЧЕНИЯ ГОМОПОЛИМЕРОВ ИЛИ СОПОЛИМЕРОВ ЭТИЛЕНА В ТРУБЧАТОМ РЕАКТОРЕ, ПО МЕНЬШЕЙ МЕРЕ, С ДВУМЯ РЕАКЦИОННЫМИ ЗОНАМИ С РАЗЛИЧНОЙ КОНЦЕНТРАЦИЕЙ АГЕНТА ПЕРЕДАЧИ ЦЕПИ | 2012 |
|
RU2572821C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭТИЛЕНА | 2000 |
|
RU2177007C1 |
РАДИКАЛЬНАЯ ПОЛИМЕРИЗАЦИЯ ЭТИЛЕНА, ИНИЦИИРУЕМАЯ ПАРОЙ ВЫСОКОПРОИЗВОДИТЕЛЬНЫХ ОРГАНИЧЕСКИХ ПЕРОКСИДОВ | 2016 |
|
RU2742275C1 |
СПОСОБ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА В РЕАКТОРЕ ВЫСОКОГО ДАВЛЕНИЯ | 2001 |
|
RU2279445C2 |
СПОСОБ ПОЛИМЕРИЗАЦИИ ВЫСОКИМ ДАВЛЕНИЕМ ЭТИЛЕННЕНАСЫЩЕННЫХ МОНОМЕРОВ | 2016 |
|
RU2649399C1 |
Способ получения сополимеров этилена с бутилакрилатом | 2019 |
|
RU2709617C1 |
Способ получения полиэтилена | 2021 |
|
RU2773507C1 |
Изобретение относится к нефтехимической промышленности для получения полиэтилена радикальной полимеризацией этилена при высоком давлении и температуре в трехзонном реакторе трубчатого типа. Полимеризацию этилена проводят при смешанном инициировании кислорода и пероксидов, подаваемых в виде раствора в органическом растворителе. В первую и во вторую зону реактора подают раствор пероксидов, содержащий смесь, состоящую из низко-, средне- и высокотемпературного пероксида, при массовом соотношении пероксидов в смеси, равном 32,5÷33,5%, 21,5÷22,5% и 44,5÷45,5%. В третью зону подают раствор только высокотемпературного пероксида. Используют пероксиды, у которых максимальная эффективность инициирования каждого достигается при температурах, отличающихся на 35-40°С, а температура максимальной эффективности инициирования самого низкотемпературного пероксида относительно температуры потока реакционной среды не превышает 20°С. Технический результат - повышение конверсии этилена (до 28,5%) в промышленном трехзонном реакторе при высокой температуре и высоком давлении (выше 200 МПа) без внесения изменений в конструкцию реактора, которые требуют существенных капитальных вложений, а также увеличение полидисперсности полиэтилена. 1 н.п. и 6 з.п. ф-лы, 1 ил., 6 пр.
1. Способ полимеризации этилена при высокой температуре и давлении выше 200 МПа в трехзонном реакторе трубчатого типа при смешанном инициировании реакции полимеризации с использованием в качестве инициаторов кислорода и пероксидов, подаваемых в виде раствора в органическом растворителе, отличающийся тем, что в первую и вторую зону реактора подают раствор пероксидов, содержащий смесь, состоящую из низкотемпературного, среднетемпературного и высокотемпературного пероксида, а в третью зону реактора подают раствор высокотемпературного пероксида, при этом используют пероксиды, у которых максимальная эффективность инициирования каждого, из трех упомянутых видов пероксидов, достигается при температурах, отличающихся на 35-40°С, а температура максимальной эффективности инициирования самого низкотемпературного пероксида относительно температуры потока реакционной среды не превышает 20°С.
2. Способ по п.1, отличающийся тем, что используют смесь низко-, средне- и высокотемпературного пероксида при следующем соотношении, мас.%:
3. Способ по п.1 или 2, отличающийся тем, что подача кислорода в первую и вторую зоны реактора составляет 18-21 мас.% от количества упомянутой смеси пероксидов, а подача кислорода в третью зону реактора составляет 58-60 мас.% от количества высокотемпературного пероксида.
4. Способ по п.1 или 2, отличающийся тем, что в качестве низкотемпературного пероксида могут быть использованы органические пероксиды или их смесь, выбранные из группы, содержащей: трет-бутилпероксипивалат, трет-бутилпероксинеодеканоат, ди-(3,5,5-триметилгексаноил)пероксид, трет-бутилпероксипивалоат, трет-бутилперокси-2-этилгексаноат, трет-бутилпероксибензоат.
5. Способ по п.1 или 2, отличающийся тем, что в качестве среднетемпературного пероксида могут быть использованы органические пероксиды или их смесь, выбранные из группы, содержащей: трет-бутилпероксибензоат, перекись дикумила, 2,2-ди(трет-бутилперокси)бутан, трет-бутилперокси-3,5,5-триметилгексаноат.
6. Способ по п.1 или 2, отличающийся тем, что в качестве высокотемпературного пероксида могут быть использованы органические пероксиды или их смесь, выбранные из группы, содержащей: 2,5-диметил-2,5-ди(трет-бутил-перокси)гексан, ди-трет-бутилпероксид, 3,6,9-триэтил-3,6,9-триметил-1,4,7-три-пероксонан.
7. Способ по п.1, отличающийся тем, что в качестве органического растворителя может быть использован растворитель, выбранный из группы, содержащей: минеральные масла, парафины нормального и изостроения, циклические углеводороды, например декан, пентадекан, изододекан, изогексадекан или их смеси.
Способ получения полиэтилена | 1990 |
|
SU1838331A3 |
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
Способ получения полиолефинов | 1982 |
|
SU1113384A1 |
ЮТЕНА ! | 0 |
|
SU312851A1 |
US 4076919 A1, 28.02.1978 | |||
US 3917577 A1, 04.11.1975. |
Авторы
Даты
2012-04-10—Публикация
2010-07-01—Подача