Изобретение относится к области силикатов, в частности к электроизоляционным стеклоэмалям, которые могут быть использованы в качестве диэлектрического барьера в установках для синтеза озона при помощи барьерных разрядов.
Для обеспечения высокой производительности установок данного типа необходимо, чтобы покрытие, использующееся в качестве диэлектрического барьера, обладало определенным набором характеристик. В связи с тем, что количество озона напрямую зависит от формы получаемого разряда, диэлектрический барьер (диэлектрическая эмаль) должен иметь значения диэлектрической проницаемости на уровне 10-25, тангенса угла диэлектрических потерь менее 0,01. Кроме того, стеклоэмаль должна обладать хорошей кроющей способностью, дилатометрическими характеристиками, близкими к металлической подложке, и высокой прочностью сцепления с металлом.
Известен состав электроизоляционной эмали для нержавеющей стали, мас.%: SiO2 29,5-38,7; BaO 15-22; CaO 1,5-7,0; SrO 4-6; CdO 2-8; MnO 0,1-1; K2O 9-15; Na2O 2-9; Li2O 0,5-1,5; B2O3 9-13; SrO 4-10; MoO3 0,5-1; CoO 0,1-1; NiO 0,1-1 [Патент РФ №2203233, класс C03C 8/02, 2003].
Наиболее близким по технической сущности и достигаемому результату является состав, мас.%: SiO2 25-35; BaO 35-45; CaO 4-7; SrO 3-8; CdO 4,5-6; MnO 0,2-1; K2O 3-5; Na2O 1-4; B2O3 3-75; МоO3 0,5-1; Cr2O3 0,5-1; CoO 0,5-1; NiO 0,5-1 [Патент РФ №2209786, класс C03C 8/02, 2003]. Данный состав имеет диэлектрическую проницаемость 11,3-13,0; ТКЛР (142-154)·10-7 1/°С, тангенс угла диэлектрических потерь (2,7-4,1)·10-3, температуру обжига эмали 700-720°С. Недостатком данного состава являются недостаточно низкие диэлектрические потери.
Техническим результатом изобретения является уменьшение значений диэлектрических потерь при сохранении остальных физико-химических показателей.
Указанный технический результат достигается тем, что электроизоляционная эмаль имеет следующий состав, мас.%:
Предлагаемый состав эмали отличается от известного определенным соотношением оксидов щелочноземельных металлов: BaO, CaO, SrO, CdO. Оставляя общую сумму щелочноземельных элементов той же, мы увеличиваем общее содержание оксида бария, вместе с тем содержание оксидов кадмия и стронция уменьшается в 2-4 раза.
Для улучшения технологических характеристик в предлагаемые составы дополнительно вводятся следующие компоненты: CaF2 и Na3AlF6. Данные соединения, являясь добавками для улучшения кроющей способности, повышают прочность сцепления эмали с металлической подложкой.
В качестве сырьевых материалов использовались: кварцевый песок; борная кислота; карбонаты: бария, кальция, стронция, кадмия, калия, натрия; оксиды: марганца, никеля, молибдена, хрома, кобальта; криолит и флюорит.
Пример 1. Состав стекла содержит следующие компоненты, мас.%:
Для приготовления сырьевые компоненты взвешивались на технических весах с точностью до 0,01 и тщательно перемешивались до получения однородной шихты. Варку стекол осуществляли в корундовых тиглях в электрической лабораторной печи с силитовыми нагревателями. Температура варки - 1200°C, выдержка при максимальной температуре - 60 минут. Выработку стекломассы осуществляли путем грануляции расплава стекломассы в воде. Гранулят измельчают в шаровой мельнице. Перед нанесением поверхность металлической подложки подвергается предварительной обработке и обезжириванию. Нанесение проводится методом электростатического осаждения. Покрытие наносится послойно до толщины 0,3-0,5 мм. Обжиг каждого слоя осуществляется при температуре 840°C.
В результате были получены следующие данные: ТКЛР 140·10-7 1/°С, состав имеет диэлектрическую проницаемость 11; тангенс угла диэлектрических потерь 1,5·10-3, прочность эмалевого покрытия на удар составляет 1,2-2,5 Дж в зависимости от вида обработки поверхности металлической подложки.
Синтез остальных составов, а также нанесение эмалевых покрытий проводят аналогично вышеуказанному примеру (см. Таблицу 1 и 2).
Таким образом, проведенный сопоставительный анализ показал, что предлагаемый состав электроизоляционной эмали отличается от известного меньшими диэлектрическими потерями и высокой прочностью сцепления эмали с металлической подложкой. Это свидетельствует о преимуществе предлагаемой эмали по сравнению с прототипом.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОЙ СТЕКЛОЭМАЛИ | 2010 |
|
RU2453514C1 |
ЭЛЕКТРОИЗОЛЯЦИОННАЯ СТЕКЛОЭМАЛЬ ДЛЯ ИЗДЕЛИЙ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ | 2012 |
|
RU2526445C2 |
ЭЛЕКТРОИЗОЛЯЦИОННАЯ ЭМАЛЬ | 2001 |
|
RU2209786C2 |
ЭЛЕКТРОИЗОЛЯЦИОННАЯ ЭМАЛЬ ДЛЯ ДЕТАЛЕЙ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ | 1999 |
|
RU2203233C2 |
ЭМАЛЬ | 2007 |
|
RU2343123C2 |
ЭМАЛЬ | 2006 |
|
RU2337076C1 |
Жаростойкое полифункциональное покрытие | 2023 |
|
RU2812460C1 |
ЭМАЛЬ "СТАВАН" | 2001 |
|
RU2203234C2 |
ФРИТТА ГРУНТОВОЙ ЭМАЛИ ДЛЯ НАНЕСЕНИЯ ЭЛЕКТРОСТАТИЧЕСКИМ МЕТОДОМ | 1994 |
|
RU2127710C1 |
СТЕКЛОКЕРАМИЧЕСКОЕ ПОКРЫТИЕ ДЛЯ ВАНАДИЯ И ЕГО СПЛАВОВ | 1996 |
|
RU2096358C1 |
Изобретение относится к составам диэлектрических стеклоэмалей и предназначено для изоляционного покрытия подложек различных типов. Технический результат изобретения заключается в уменьшении диэлектрических потерь. Электроизоляционная стеклоэмаль для изделий из нержавеющей стали содержит следующие компоненты, мас.%: SiO2 - 20,0-25,0; CaO - 4,5-12,0; SrO - 1,0-2,0; CdO - 2,0-3,0; MnO - 0,1-0,5; K2O - 3,0-4,0; Na2O - 1,0-1,5; B2O3 - 5,0-5,5; CaF2 - 4,0-5,0; MoO3 - 0,5-0,8; Cr2O3 - 0,5-0,8; Co2O3 - 0,1-0,5; NiO - 0,1-1,0; Na3AlF6 - 0,1-0,5; BaO - остальное. 1 пр., 2 табл.
Электроизоляционная стеклоэмаль для изделий из нержавеющей стали, включающая SiO2, BaO, CaO, SrO, CdO, MnO, K2O, Na2O, B2O3, MoO3, Cr2O3, Co2O3, NiO, отличающаяся тем, что она дополнительно содержит Na3AlF6 и CaF2 при следующем соотношении компонентов, мас.%:
ЭЛЕКТРОИЗОЛЯЦИОННАЯ ЭМАЛЬ | 2001 |
|
RU2209786C2 |
БРАГИНА Л.Л | |||
и др | |||
Технология эмали и защитных покрытий | |||
- Харьков: НТУ ХПИ, 2003, с.342-346 | |||
RU 2059579 C1, 10.05.1996 | |||
ЭЛЕКТРОИЗОЛЯЦИОННАЯ ЭМАЛЬ ДЛЯ ИЗДЕЛИЙ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ | 2004 |
|
RU2264994C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКСИДИАЛКИЛПЕРЕКИСЕЙ | 0 |
|
SU358933A1 |
Авторы
Даты
2012-06-20—Публикация
2010-10-28—Подача