ДОДЕКАПЕПТИДЫ, ОБЛАДАЮЩИЕ КАРДИОПРОТЕКТОРНЫМИ СВОЙСТВАМИ Российский патент 2012 года по МПК C07K7/08 A61K38/10 A61P9/10 

Описание патента на изобретение RU2457216C1

Изобретение относится к биологически активным пептидам, способным влиять на метаболическое и функциональное состояние сердца, а также к лекарственным средствам на их основе.

Ишемическая болезнь сердца (ИБС) - заболевание миокарда, обусловленное острым или хроническим несоответствием потребности миокарда в кислороде и реального коронарного кровообращения сердечной мышцы. ИБС является одним из наиболее распространенных заболеваний сердечно-сосудистой системы во всех экономически развитых странах. В России распространенность ИБС и смертность от нее - одни из наиболее высоких в Европе [1].

Морфологической основой ИБС более чем в 95-97% случаев является атеросклероз коронарных артерий, ведущий к их сужению и нарушению коронарного кровотока и адекватной перфузии миокарда. Одним из следствий нарушения сердечного метаболизма является окислительный стресс - появление большого количества свободных окислительных радикалов, что инициирует каскад биохимических процессов в миокарде, приводящий к повреждению сосудистого эндотелия, разрушению кардиомиоцитов и их гибели [1, 2].

Снижение степени повреждения сердца в период восстановления нормального кровотока (реперфузии) и восстановление энергетического обмена в миокарде являются важнейшими задачами при лечении ИБС и предотвращении острых коронарных состояний. В этой связи проводится огромное количество исследований, направленных на поиск новых кардиопротекторных веществ и создание эффективных противоишемических лекарственных препаратов.

Одним из перспективных направлений в этой сфере является снижение реперфузионных повреждений путем регулирования биодоступности оксида азота NO-ловушки свободных радикалов, вазодилатирующего и кардиопротекторкого агента [2, 3]. Известен эндогенный полипептид апелин [4, 5], способный восстанавливать сократительные свойства сердца через NO-зависимый механизм снижения кровяного давления, сохраняя при этом положительный ионотропный эффект (повышение силы сердечных сокращений). Этот пептид был назван апелином потому, что он является лигандом APJ-рецептора; система апелин-APJ-рецептор играет важную роль в сердечно-сосудистом гомеостазе [4-6]. Апелин принадлежит к группе адипокинов - вазоактивных пептидов, опосредующих механизмы адаптации клеток к повреждению, состоит из 77 аминокислотных остатков и подвергается дальнейшему протеолизу до более коротких фрагментов, сохраняющих его биологическую активность - апелинов -36, -19, -17, -13 и -12. Известно, что наиболее высокой биологической активностью обладают апелин -12 и -13 [5-9].

С - концевые фрагменты исходного апелина 77, содержащие менее 10 остатков аминокислот, физиологически не эффективны [10, 11].

В условиях недостаточного снабжения сердца энергетическими субстратами и кислородом активация системы апелин - АРJ рецептор апелинами-12 и -13 увеличивает восстановление функции сердца после ишемии, блокирует открытие митохондриальной поры и апоптоз [11, 12]. Принципиально важно, что апелин-12 существенно улучшает не только восстановление функции, но и энергетический обмен ишемизированных кардиомиоцитов путем сохранения фонда адениннуклеотидов и окисления глюкозы, а также уменьшает повреждения сарколеммы [8].

При ишемии, вызванной окклюзией коронарной артерии, экспрессия апелина-12 (на уровне мРНК и продукции пептида) значительно возрастает, однако при возобновлении кровоснабжения сердца - снижается до исходного уровня, указывая на уменьшение биодоступности пептида [11, 12]. Сходная ситуация наблюдается у больных ишемической болезнью сердца - сниженные уровни апелина в плазме сохраняются в течение нескольких недель после инфаркта миокарда и при развившейся сердечной недостаточности [13, 14]. Это обосновывает необходимость использования экзогенного апелина для регуляции активности системы апелин - APJ рецептор при ишемическом повреждении сердца. Изучение биологических свойств апелиновых пептидов и системы апелин - APJ рецептор открывает возможности для создания лекарственных препаратов нового поколения для терапии ИБС [15].

Известны два семейства пептидных производных на базе молекулы апелина-12, описываемых нижеприведенными формулами (1) и (2):

В обоих случаях Р1 и X1 представляют собой атом водорода, аминокислотный остаток или пептидную цепь, содержащую максимально 25 аминокислот. При этом, когда Р1 (или X1) - атом водорода, среди приведенных структур [16-17] нет соединений с модифицированным N-концевым остатком аргинина, будь то модификация его α-аминогруппы, будь то модификация гуанидиновой функции. В обоих семействах - (1) и (2) остаток метионина, как правило, заменен на норлейцин или циклогексилаланин, а С - концевая карбоксильная группа так или иначе защищена: восстановлена до спиртовой или альдегидной функции либо представляет собой соответствующие амид, эфир, соль [16-17]. Кроме того, следует заметить, что в указанных работах [16-17] пептидным производным, соответствующим формулам (1) и (2), приписываются кардиорегуляторные и многие другие свойства на том лишь основании, что они, по всей вероятности, являются лигандами APJ-рецептора и поэтому могут быть использованы как терапевтические и профилактические средства при самых различных патологиях, в том числе и в кардиологии. Однако это предположение ничем не подкреплено, так как какие-либо примеры по тестированию биологической активности этих пептидов в патентах [16-17] вообще отсутствует и остается неясным: влияют ли и, если влияют, то каким образом, многочисленные модификации и аминокислотные замены, внесенные в исходную молекулу апелина, на его биологическую активность. Поскольку в ряду пептидных аналогов не существует четкой взаимосвязи структура - активность; кардиопротекторная или любая другая биологическая активность модифицированных соединений не является очевидной и никак не доказана.

Таким образом, апелин-12 является наиболее простым фрагментом молекулы исходного апелина 77, еще сохраняющим кардиопротекторные свойства. Поэтому апелин-12 был выбран нами в качестве прототипа. Однако высокая активность пептидаз в крови снижает эффективность использования этого пептида в эксперименте и клинике [18]. Кроме того, в состав апелина-12 входит метионин, который чрезвычайно легко окисляется кислородом воздуха до соответствующего сульфоксида [19]. Известно, что подобные пептиды могут быть нестабильны при хранении [19].

В связи с этим задачей настоящего изобретения явился поиск и синтез структурных аналогов апелина-12, сочетающих высокую кардиопротекторную активность (снижение нарушений функции и метаболизма сердца при ишемии и реперфузии) с повышенной протеолитической стабильностью и устойчивостью при хранении.

Поставленная задача решается синтезом приведенных ниже додекапептидов:

Структуру заявляемых пептидов можно выразить общей формулой:

Х-Arg(NGY)-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-Z,

где X=СН3, Y=Н, Z=ОН для соединения (II), X=СН3, Y=Н, Z=NH2 для соединения (III), X=Н, Y=NO2, Z=NH2 для соединения (IV)

Как уже сказано выше, в ряду пептидных аналогов не существует четкой взаимосвязи структура - активность, следовательно, кардиопротекторная активность этих соединений не является очевидной. Состав заявляемых соединений оригинален и не описан в доступной литературе.

Заявляемые пептиды получали твердофазным методом пептидного синтеза с использованием Fmoc-технологии, описанным ниже в примерах.

Список сокращений:

АА - аминокислота;

Воc - трет-бутилоксикарбонил;

TBTU - N-[(1Н-бензотриазолил)(диметиламино)метилен]-N-метилметанаминиум тетрафторборат;

But - трет-бутил;

DIC - N,N'-диизопропилкарбодиимид;

DIPEA - N,N-диизопропилэтиламин;

DCM - дихлорметан;

Fmoc - 9-флуоренилметоксикарбонил;

НОВТ - 1-гидроксибензотриазол;

Mtr - 4-метокси-2,3,6-триметилбензолсульфонил;

Me - метил;

NMP - N-метилпирролидон;

Pip - пиперидин;

Рmc - 2,2,5,7,8-пентаметилхроман-6-сульфонил;

TIBS - триизобутилсилан;

TFA - трифторуксусная кислота;

ВЭЖХ - высокоэффективная жидкостная хроматография;

ИБС - ишемическая болезнь сердца;

ТФС - твердофазный синтеза пептидов;

СФ - сократительная функция.

Твердофазный синтез пептидов

В работе использованы производные L-аминокислот (Fluka и Bachem, Швейцария), DIC, DIPEA, HOBt, TIBS, (Fluka, Швейцария). Для синтеза применяли N-метилпирролидон, дихлорметан, 4-метилпиперидин, метанол и TFA (Fluka, Швейцария). Аналитическую ВЭЖХ проводили на хроматографе (Gilson, Франция), использовали колонку Nucleosil 100 С18, 5 мкм, (4.6×250 мм) (Sigma, США) в качестве элюентов использовали буфер А - 0.1% TFA, буфер Б - 80% ацетонитрила в буфере А, элюция градиентом концентрации буфера Б в буфере А от 0% до 60% за 30 мин. Скорость потока 1 мл/мин, детекция при 220 нм. Структура полученных пептидов доказана спектрами 1Н-ЯМР и данными масс-спектрометрии. 1Н-ЯМР-спектры снимали на спектрометре WM-500 (Braker) 500 МГц (ФРГ) в DMSO-d6 при 300 K, концентрация пептидов составляла 2-3 мг/мл. Химические сдвиги измерялись относительно тетраметилсилана. Масс-спектры регистрировали на приборе PC-Kompact MALDI (Kratos, Англия).

Апелин-12 (I) был получен для использования в качестве вещества сравнения при проведении биологических тестов. Соединения (I-IV), приведенные в таблице 1, были получены автоматическим твердофазным методом с использованием Fmoc-методологии. Пептидные кислоты синтезированы на полимере Ванга с гидроксиметилфеноксиметильной якорной группой, а соответствующие амиды на смоле Ринка (Rink-amide-resin). Для блокирования функциональных групп боковых цепей аминокислот во всех случаях применяли следующие защиты: Рmc - для гуанидиновой функции остатков аргинина, трет-бутильную для гидроксильной функции остатка серина, трет-бутилоксикарбонильную для ε-аминогруппы остатка лизина и тритильную для имидазольного кольца остатка гистидина. Синтез пептидов проводили, начиная с С-конца. Второй аминокислотой с С-конца в последовательности апелина 12 и выбранных аналогов является пролин. Известно, что в условиях ТФС пролинсодержащие дипептидилполимеры склонны к побочной реакции образования соответствующих дикетопиперазинов, сопровождающейся потерей пептидных цепей, с полимерного носителя [17, 20]. Для исключения из синтетического цикла проблемной стадии пролинсодержащего дипептидилполимера (H-Pro-Phe-Р) на этом этапе ТФС к фенилаланил-полимеру присоединяли дипептидные блоки Fmoc-Met-Pro-OH в случае получения апелина или Fmoc-Nle-Pro-OH при синтезе его аналогов (см. табл.1), далее пептидную цепь наращивали по одной аминокислоте. Соответствующие дипептидные блоки Fmoc-Met-Pro-OH и Fmoc-Nle-Pro-OH были получены методами классической пептидной химии в растворе, их гомогенность подтверждена данными тонкослойной хроматографии, структура спектрами 1Н-ЯМР. Для отщепления Fmoc-защиты в ходе ТФС применяли 25% раствор 4-метилпиперидина в диметилформамиде, для создания амидной связи использовали диизопропилкарбодиимид с добавкой 1-НОВТ.

Пример 1. Синтез H-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH (I)-апелина-12

Для твердофазного синтеза апелина-12 (I) и [Nα(Me)Arg1, Nle10]-апелина 12 (II) использовали полимер Ванга с гидроксиметилфеноксиметильной якорной группой. Синтез проводили с С-конца, исходя из 0.4 г (0.25 ммоль) Fmoc-Phe-полимера фирмы Bachem (Швейцария) с содержанием фенилаланина - 0.67 ммоль/г. Ниже приведен стандартный протокол ТФС.

Протокол твердофазного синтеза пептидов (I) Операция Реагент Время обработки Цикл 1 1 Промывка 5×NMP 3 мин 2 Деблокирование α-аминогрупп 25% 4-MePip/NMP 10 мин 3 Промывка 5×NMP 3 мин 4 Активация 1 ммоль Fmoc-Met-Pro-OH + 1 ммоль TBTU+1 ммоль НОВТ + 2 ммоль DIPEA в NMP 3-5 мин 5 Конденсация 1 ммоль активированного производного Fmoc-AA в NMP 90 мин 6 Промывка 5×NMP 3 мин 7 Тест с нингидрином Цикл 2-10

1 Промывка 5×NMP 3 мин 2 Деблокирование α-аминогрупп 25% 4-Ме Pip/NMP 10 мин 3 Промывка 5×NMP 3 мин 4 Активация 1 ммоль Fmoc-AA-OH + 1 ммоль НОВТ + 1 ммоль DIC в NMP/DMF 20 мин 5 Конденсация 1 ммоль активированного производного Fmoc-AA в NMP 90 мин 6 Промывка 5×NMP 3 мин

Заключительное деблокирование и отщепление целевого пептида от полимера проводили в одну стадию путем обработки соответствующего пептидилполимера смесью 10 мл TFA, 0.5 мл деионизованной воды, 0.5 мл тиоанизола и 0.25 мл TIBS в течение 2-3 ч. Затем полимер отфильтровывали, промывали 2×2 мл деблокирующей смеси, фильтрат упаривали и к остатку прибавляли сухой этилацетат или эфир. Осадок отфильтровывали, промывали DCM (3×3 мл), эфиром (3×5 мл), сушили в вакуум-эксикаторе. Сырой продукт твердофазного синтеза очищали с помощью препаративной ВЭЖХ, используя колонку Диасорб С16 130Т (25×250 мм), размер частиц сорбента 10 мкм. В качестве элюентов использовали буфер А - 0.1% водный раствор TFA и буфер Б - 80% ацетонитрила в воде. Элюцию проводили градиентом 0.5% в минуту буфера Б в буфере А от 100% буфера А со скоростью 10 мл/мин. Пептид детектировали при длине волны 220 нм. Фракции, содержащие целевой продукт, объединяли, ацетонитрил упаривали и лиофилизовали. Гомогенность продукта определяли с помощью аналитической ВЭЖХ, структуру подтверждали данными масс-спектрометрии и 1Н-ЯМР-спектроскопии. Выходы пептидов, данные ВЭЖХ и масс-спектрометрии приведены в таблице.

Пример 2. Синтез H-(NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH (II)

Синтез пептида (II) проводили аналогично синтезу пептида (I) за исключением того, что активацию Fmoc-(Me)Arg(Mtr)-OH в последнем цикле ТФС проводили с использованием TBTU/HOBT/DIPEA, см. нижеприведенный протокол.

Протокол твердофазного синтеза пептидов (I) Операция Реагент Время обработки Цикл 1 1 Промывка 5×NMP 3 мин 2 Деблокирование α-аминогрупп 25% 4-MePip/NMP 10 мин 3 Промывка 5×NMP 3 мин 4 Активация 1 ммоль Fmoc-Met-Pro-OH + 1 ммоль TBTU + 1 ммоль НОВТ + 2 ммоль DIPEA в NMP 3-5 мин 5 Конденсация 1 ммоль активированного производного Fmoc-AA в NMP 90 мин 6 Промывка 5×NMP 3 мин 7 Тест с нингидрином Цикл 2-9 1 Промывка 5xNMP 3 мин 2 Деблокирование α-аминогрупп 25% 4-Ме Pip/NMP 10 мин 3 Промывка 5×NMP 3 мин 4 Активация 1 ммоль Fmoc-AA-OH + 1 ммоль НОВТ + 1 ммоль DIC в NMP/DMF 20 мин 5 Конденсация 1 ммоль активированного производного Fmoc-AA в NMP 90 мин 6 Промывка 5×NMP 3 мин Цикл 10 1 Промывка 5×NMP 3 мин 2 Деблокирование α-аминогрупп 25% 4-Ме Pip/NMP 10 мин 3 Промывка 5×NMP 3 мин 4 Активация 1 ммоль Fmoc-(Me)Arg(Mtr)-OH + 1 ммоль НОВТ + 1 ммоль TBTU + 2 ммоль DIPEA в NMP/DMF 3-5 мин 5 Конденсация 1 ммоль активированного производного Fmoc-AA в NMP 90 мин 6 Промывка 5×NMP 3 мин

Отщепление защит, очистку и идентификацию пептида (II) проводили так же, как в примере 1. Данные приведены в таблице 1.

Пример 3. Синтез H-(NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-NH2 (III) / H-Arg(NGNO2)-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-NH2 (IV)

Для твердофазного синтеза соединений (III) и (IV) использовали сополимер стирола с 1% дивинилбензола с 4-(2,4-диметоксифенил)-Fmoc-аминометилфенокси - якорной группой (Rink-amide-полимер) фирмы Nova BoiChem, Швейцария, предназначенный для получения амидов пептидов, содержащий 0.60 ммоль/г аминогрупп. Синтез амида додекапептидов (III) и (IV) проводили с С-конца в соответствии с нижеприведенным протоколом твердофазного синтеза: присоединяли стартовый Fmoc-фенилаланин, затем дипептидный блок Fmoc-Nle-Pro-OH, далее ступенчато (присоединяя по одной аминокислоте), исходя из 0.20 г (0.12 ммоль) Rink-amide-полимера. Синтез проводили в полуавтоматическом режиме на пептидном синтезаторе Applied Biosystems 431А по стандартной программе для однократной конденсации Fmoc-аминокислот.

Протокол твердофазного синтеза пептида (III) Операция Реагент Время обработки Цикл 1 1 Промывка 5×NMP 3 мин 2 Деблокирование α-аминогрупп 25% 4-Ме Pip/NMP 10 мин 3 Промывка 5×NMP 3 мин 4 Активация 1 ммоль Fmoc-Phe-OH + 1 ммоль НОВТ + 1 ммоль DIC в NMP/DMF 20 мин 5 Конденсация 1 ммоль активированного производного Fmoc-AA в NMP 90 мин 6 Промывка 5×NMP 3 мин Цикл 2 1 Промывка 5×NMP 3 мин 2 Деблокирование α-аминогрупп 25% 4-MePip/NMP 10 мин 3 Промывка 5×NMP 3 мин 4 Активация 1 ммоль Fmoc-Nle-Pro-OH + 1 ммоль TBTU + 1 ммоль НОВТ + 2 ммоль DIPEA в NMP 3-5 мин 5 Конденсация 1 ммоль активированного производного Fmoc-AA в NMP 90 мин 6 Промывка 5×NMP 3 мин 7 Тест с нингидрином Цикл 3-10 1 Промывка 5×NMP 3 мин 2 Деблокирование α-аминогрупп 20% 4-Ме Pip/NMP 10 мин 3 Промывка 5×NMP 3 мин 4 Активация 1 ммоль Fmoc-AA-OH + 1 ммоль НОВТ + 1 ммоль DIC в NMP/DMF 20 мин 5 Конденсация 1 ммоль активированного производного Fmoc-AA в NMP 90 мин 6 Промывка 5×NMP 3 мин Цикл 11 1 Промывка 5×NMP 3 мин 2 Деблокирование α-аминогрупп 25% 4-MePip/NMP 10 мин 3 Промывка 5×NMP 3 мин 4 Активация 1 ммоль Fmoc-(Me)Arg(Mtr)-OH (в случае пептида (III)) / 1 ммоль Вос-Arg(NO2)-OH (в случае пептида (IV)) + 1 ммоль TBTU + 1 ммоль НОВТ + 2 ммоль DIPEA в NMP 3-5 мин 5 Конденсация 1 ммоль активированного производного Fmoc-AA в NMP 90 мин 6 Промывка 5×NMP 3 мин 7 Тест с нингидрином

Отщепление защит, очистку и идентификацию пептидов (III) и (IV) проводили так же, как в примере 1. Данные приведены в таблице 1.

Таблица 1. Характеристики апелина 12 (I) и его производных (II)-(IV) Формула пептида Мрасчет. Выход*, % ВЭЖХ MALDI-TOF, m/z Rt, мин % (I) H-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH 1422.7 67 14.80 98 1422.8 (II) H-(NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH 1418.7 77 17.06 98 1418.9 (III) H-(NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-NH2 1417.7 18 16.47 96 1417.9 (IV) H-Arg(NGNO2)-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-NH2 1448.7 20 16.92 97 1403.8 (-NO2), 1448.8

В таблице приведены выходы пептидов в расчете на стартовую аминокислоту, присоединенную к полимеру (т.е. суммарные выходы с учетом всех стадий синтеза).

Для исследования свойств пептидов использована модель тотальной ишемии и реперфузии изолированного перфузируемого сердца крыс.

Пример 4. Влияние пептидов на восстановление функции сердца и сосудов.

Перфузия изолированного сердца крысы. Опыты выполнены на сердце крыс-самцов линии Wistar (массой 300-340 г). У наркотизированных уретаном (внутрибрюшинно 1,25 мг на г массы тела) животных извлекали сердце и перфузировали ретроградно в течение 15-20 мин раствором Кребса (РК) с 11 мМ глюкозой, насыщенным карбогеном (95% O2 ± 5% CO2) pH 7,4±0,1 при 37°C, при постоянном перфузионном давлении 60 мм рт.ст. После этого сердца перфузировали антеградно по Нийли при постоянном давлении наполнения левого предсердия 15 мм рт.ст. и среднем перфузионном давлении в аорте 60 мм рт.ст. Давление в аорте и левом желудочке регистрировали при помощи тензометрических датчиков Р 50, монитора SP 1405 и регистратора SP 2010 (Gould Statham, США). Показателем интенсивности сократительной функции (ИСФ) левого желудочка служило произведение частоты сокращений сердца на развиваемое давление (разность между систолическим и минимальным диастолическим давлением). Насосную функцию левого желудочка оценивали по величине минутного (сумма коронарного потока и аортального объема) и ударного (отношение минутного объема к частоте сокращений сердца) объемов. Коронарное сопротивление рассчитывали из отношения аортального давления к коронарному потоку.

Протокол опытов. После перфузии сердца по Нийли в течение 15-20 мин регистрировали показатели функции сердца и коронарных сосудов (исходное состояние). Затем осуществляли 5-минутную инфузию РК с постоянной скоростью 4 мл/мин и подвергали сердца глобальной нормотермической (37°C) ишемии в течение 35 мин. За ишемией следовала 5-минутная ретроградная инфузия РК со скоростью 4 мл/мин и реперфузия по Нийли в течение 25 мин.

Действие прототипа (апелина-12, I) и заявляемых пептидов (II, III и IV) изучали на восстановление коронарной, сократительной и насосной функции левого желудочка после 35 мин глобальной ишемии и 30 мин реперфузии. Пептиды (I-IV) растворяли в РК при 37°C до концентрации 140 мкМ. Ранее при изучении дозозавимого эффекта апелина-12 (I) на этой модели было показано, что данная концентрация является оптимальной для восстановления функции сердца и сосудов [5]. Раствор апелина-12 или пептидов (II-IV) вводили в аорту в течение 5 мин с постоянной скоростью 4 мл/мин непосредственно перед глобальной ишемией, после ишемии вначале реперфузии вводили контрольный раствор Кребса без пептидов. В контроле в аорту до и после ишемии вводили раствор Кребса без пептидов.

В таблице 2 суммировано влияние прототипа (апелина-12 (I)) и заявляемых пептидов (II, III и IV) на восстановление показателей, характеризующих восстановление сократительной и насосной функции сердца и функции коронарных сосудов, к концу реперфузии после периода глобальной ишемии.

Таблица 2. Влияние апелина-12 (I) и заявляемых пептидов (II-IV) на восстановление функции сердца и сосудов при реперфузии после глобальной ишемии. 1 2 3 4 5 6 Исходное состояние РК (контроль) (I) (прототип) (II) (III) (IV) Коронарный поток 74±3 91±4a 94±4a 97±2a 94±2a 16±2 мл/мин Перфузионное давление 93±1 98±1a 98±1a 98±1а 98±1а 61±6 мм рт.ст. Коронарное сопротивление 125±4 108±5a 106±5a 103±2a 105±2a 3,80±0,05 мм рт.ст./мл Систолическое давление 68±1 90±3a 92±3а 95±1а 92±1а 96±1 мм рт.ст. Диастолическое давление 10±1* 3±1*a 2±1*а -1±1*аб -1±1*аб -2±1 мм рт.ст. Развиваемое давление 56±1 86±2a 90±2а 93±2аб 89±2а 100±1 мм рт.ст. Частота сокращений сердца 78±1 93±2a 95±2a 97±1а 94±1а 299±2/мин
Интенсивность СФ
30341±530 мм рт.ст./мин
44±2 80±2а 89±3аб 90±3аб 84±3а
Аортальный объем 0±1 64±5а 73±4а 84±2абв 74±2аг 26±3 мл/мин Минутный объем 26±2 75±2а 82±2аб 89±2аб 82±2абг 43±1 мл Ударный объем 34±2 80±3а 90±3аб 92±1аб 87±2аг 141±1 мкл

Указаны М±m для серий из 6-8 опытов. Пептиды (140 мкМ) вводили перед глобальной ишемией, как указано в разделе "Протокол опытов". В левом столбце (1) приведены абсолютные значения показателей в исходном состоянии. В столбцах 2-6 указано восстановление показателя к окончанию реперфузии в % к исходному значению. * - мм рт.ст. Достоверно отличается (Р<0,05) от: а - контроля, б - прототипа (апелина-12, (I)), в - (II), г - (III).

Из приведенного примера (см. табл.2) видно, что введение любого из пептидов в сердце до ишемии достоверно улучшало восстановление всех показателей по сравнению с контролем. При сравнении действия заявляемых пептидов с прототипом были выявлены следующие особенности.

Под действием заявляемых пептидов не происходило достоверного увеличения показателей функции сосудов сердца (коронарного потока и коронарного сопротивления) по сравнению с таковыми при использовании прототипа. Однако каждый из заявляемых пептидов улучшал восстановление показателей сократительной функции сердца по сравнению с прототипом. В результате введения пептида (II) достоверно увеличивалось восстановление интенсивности сократительной функции; под действием пептида (III) достоверно увеличивалось развиваемое давление и интенсивность сократительной функции и снижалось диастолическое давление; при использовании соединения (IV) достоверно увеличивалось восстановление интенсивности сократительной функции и снижалось диастолическое давление.

Под влиянием заявляемых пептидов происходило также увеличение восстановления показателей насосной функции сердца по сравнению с прототипом. К окончанию реперфузии при использовании пептида (II) наблюдали достоверное увеличение минутного и ударного объема; под действием пептида (III) - достоверное возрастание аортального, минутного и ударного объемов; при введении соединения (IV)-достоверное увеличение минутного и ударного объемов.

Преимущества заявляемых пептидов при восстановлении функции сердца после ишемии представлены на фиг.1. Видно, что каждый из заявляемых пептидов увеличивал восстановление интенсивности сократительной функции и показателя насосной функции - минутного объема - по сравнению с прототипом. В наибольшей степени защитные эффекты проявлялись при использовании пептида (III).

На основании анализа полученных результатов (табл.2, фиг.1) можно заключить, что эффективность защиты функции сердца от ишемического и реперфузионного повреждения под действием заявляемых пептидов увеличивается в ряду IV<II<III.

Кроме того, заявляемые пептиды (II, III, IV) более устойчивы к действию протеолитических ферментов, чем прототип апелин-12 (I), так как С-концевая часть молекулы пептидов (III, IV) защищена от действия карбоксипептидаз амидной функцией, а N-концевая часть - содержит либо остаток Nα-алкил аминокислоты-Nα-метиларгинина (пептиды II, III), либо NG-нитрогруппу (пептид IV), что повышает устойчивость к действию аминопептидаз. Все приведенные соединения вместо подверженного нежелательному окислению метионина (прототип) содержат норлейцин - природную аминокислоту небелкового происхождения, абсолютно устойчивую к окислению кислородом. Благодаря высокой устойчивости к действию ферментов, пептиды формулы (II, III, IV) могут найти применение в медицине в качестве кардиопротекторных средств.

Заявляемые пептиды малотоксичны, поскольку являются аналогами части эндогенного полипептида апелина, не обладающего токсическими свойствами, и состоит из остатков природных аминокислот, которые обычно присутствуют в организме.

Похожие патенты RU2457216C1

название год авторы номер документа
КРИСТАЛЛОИДНЫЕ КАРДИОПЛЕГИЧЕСКИЕ РАСТВОРЫ, СОДЕРЖАЩИЕ ДОДЕКАПЕПТИДЫ (ВАРИАНТЫ) 2013
  • Писаренко Олег Иванович
  • Шульженко Валентин Сергеевич
  • Студнева Ирина Михайловна
  • Пелогейкина Юлия Александровна
  • Азьмуко Андрей Андреевич
  • Молокоедов Александр Сергеевич
  • Палькеева Марина Евгеньевна
  • Сидорова Мария Владимировна
RU2549470C1
ТЕТРАДЕКАПЕПТИДЫ, УЛУЧШАЮЩИЕ ВОССТАНОВИТЕЛЬНУЮ ФУНКЦИЮ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ ПРИ ИШЕМИИ 2017
  • Азьмуко Андрей Андреевич
  • Веселова Оксана Михайловна
  • Молокоедов Александр Сергеевич
  • Овчинников Михаил Владимирович
  • Палькеева Марина Евгеньевна
  • Писаренко Олег Иванович
  • Серебрякова Лариса Ивановна
  • Сидорова Мария Владимировна
  • Студнева Ирина Михайловна
RU2648846C1
Средство, увеличивающее устойчивость сердца к реперфузионному повреждению 2016
  • Сидорова Мария Владимировна
  • Кудрявцева Елена Витальевна
  • Овчинников Михаил Владимирович
  • Маслов Леонид Николаевич
  • Мухомедзянов Александр Валерьевич
  • Цибульников Сергей Юрьевич
RU2642826C1
СПОСОБ ИММУНОФЕРМЕНТНОГО АНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ АУТОАНТИТЕЛ К β-АДРЕНОРЕЦЕПТОРУ В ПЛАЗМЕ И СЫВОРОТКЕ КРОВИ ЧЕЛОВЕКА 2011
  • Афанасьева Ольга Ильинична
  • Клесарева Елена Александровна
  • Сидорова Мария Владимировна
  • Палькеева Марина Евгеньевна
  • Беспалова Жанна Дмитриевна
  • Левашов Павел Андреевич
  • Покровский Сергей Николаевич
  • Кипор Светлана Геннадиевна
RU2452964C1
АМИД НОНАПЕПТИДА, ОБЛАДАЮЩИЙ СПОСОБНОСТЬЮ ПРЕДОТВРАЩАТЬ ПОВЫШЕНИЕ ПРОНИЦАЕМОСТИ ЭНДОТЕЛИЯ СОСУДОВ 2009
  • Беспалова Жанна Дмитриевна
  • Бушуев Валерий Николаевич
  • Куликова Татьяна Гаврииловна
  • Марченко Алексей Васильевич
  • Молокоедов Александр Сергеевич
  • Секридова Александра Владимировна
  • Сидорова Мария Владимировна
  • Степанова Ольга Владиславна
  • Ширинский Владимир Павлович
RU2402565C1
АМИД НОНАПЕПТИДА, ПРЕПЯТСТВУЮЩИЙ ПОВЫШЕНИЮ ГИПЕРПРОНИЦАЕМОСТИ СОСУДИСТОГО ЭНДОТЕЛИЯ 2012
  • Абрамов Александр Александрович
  • Азьмуко Андрей Андреевич
  • Беспалова Жанна Дмитриевна
  • Бушуев Валерий Николаевич
  • Вилиткевич Елена Леонидовна
  • Казакова Ольга Алексеевна
  • Капелько Валерий Игнатьевич
  • Лакомкин Владимир Леонидович
  • Молокоедов Александр Сергеевич
  • Самсонов Михаил Васильевич
  • Сидорова Мария Владимировна
  • Хапчаев Аскер Юсуфович
  • Ширинский Владимир Павлович
RU2493164C1
СИНТЕТИЧЕСКИЙ АНТИГЕН, ОБЛАДАЮЩИЙ СПОСОБНОСТЬЮ СВЯЗЫВАТЬ АУТОАНТИТЕЛА К МУСКАРИНОВОМУ М2-РЕЦЕПТОРУ 2012
  • Ефремов Евгений Евгеньевич
  • Мамочкина Елена Николаевна
  • Шарф Татьяна Васильевна
  • Палькеева Марина Евгеньевна
  • Азьмуко Андрей Андреевич
  • Беспалова Жанна Дмитриевна
  • Сидорова Мария Владимировна
  • Молокоедов Александр Сергеевич
  • Голицин Сергей Павлович
  • Масенко Валерий Павлович
  • Зыков Кирилл Алексеевич
  • Казначеева Елена Ивановна
  • Кузнецова Татьяна Виленовна
  • Рвачева Анна Валерьевна
  • Миронова Наталья Александровна
  • Малкина Татьяна Анатольевна
  • Ткачев Герман Александрович
  • Рогова Мария Михайловна
  • Родионова Екатерина Сергеевна
RU2502743C1
СИНТЕТИЧЕСКИЙ АНТИГЕН, ОБЛАДАЮЩИЙ СПОСОБНОСТЬЮ СВЯЗЫВАТЬ АУТОАНТИТЕЛА К β-АДРЕНОРЕЦЕПТОРУ 2007
  • Покровский Сергей Николаевич
  • Афанасьева Ольга Ильинична
  • Левашов Павел Андреевич
  • Дмитриева Оксана Александровна
  • Ефремов Евгений Евгеньевич
  • Беспалова Жанна Дмитриевна
  • Сидорова Мария Владимировна
  • Палькеева Марина Евгеньевна
RU2356576C1
ПРОИЗВОДНЫЕ ГЕМИНА И ИХ ФАРМАЦЕВТИЧЕСКИ ПРИЕМЛЕМЫЕ СОЛИ, СПОСОБ ПОЛУЧЕНИЯ, ПРИМЕНЕНИЕ И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ 2002
  • Евстигнеева Р.П.
  • Желтухина Г.А.
  • Зарубина Т.В.
  • Небольсин В.Е.
  • Носик Д.Н.
  • Носик Н.Н.
RU2238950C2
АМИД ОКТАПЕПТИДА, ОБЛАДАЮЩИЙ СПОСОБНОСТЬЮ ПОВЫШАТЬ АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ И ЧАСТОТУ СЕРДЕЧНЫХ СОКРАЩЕНИЙ 2007
  • Чазов Евгений Иванович
  • Беспалова Жанна Дмитриевна
  • Сидорова Мария Владимировна
  • Палькеева Марина Евгеньевна
  • Азьмуко Андрей Андреевич
  • Капелько Валерий Игнатьевич
  • Лакомкин Владимир Леонидович
RU2346001C1

Иллюстрации к изобретению RU 2 457 216 C1

Реферат патента 2012 года ДОДЕКАПЕПТИДЫ, ОБЛАДАЮЩИЕ КАРДИОПРОТЕКТОРНЫМИ СВОЙСТВАМИ

Изобретение относится к биологически активным пептидам, способным влиять на метаболическое и функциональное состояние сердца, а также к лекарственным средствам на их основе. Предложены додекапептиды общей формулы X-Arg(NGY)-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-Z, где X=CH3, Y=H, Z=OH для соединения (II), Х=CH3, Y=H, Z=NH2 для соединения (III), X=H, Y=NO2, Z=NH2 для соединения (IV), обладающие кардиопротекторными свойствами. Заявленные пептиды могут найти применение в качестве кардиопротекторных средств в кардиологии для терапии сердечно-сосудистых заболеваний, в частности ишемической болезни сердца. 2 табл., 4 пр., 1 ил.

Формула изобретения RU 2 457 216 C1

Додекапептиды общей формулы
X-Arg(NGY)-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-Z,
где X=CH3, Y=Н, Z=ОН для соединения (II),
Х=СН3, Y=H, Z=NH2 для соединения (III),
X=H, Y=NO2, Z=NH2 для соединения (IV).

Документы, цитированные в отчете о поиске Патент 2012 года RU2457216C1

EP 1116727 A1, 18.07.2001
Писаренко О.И
и др
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
- Кардиология, 2010, т.50, №10, с.44-49.

RU 2 457 216 C1

Авторы

Писаренко Олег Иванович

Шульженко Валентин Сергеевич

Пелогейкина Юлия Александровна

Палькеева Марина Евгеньевна

Сидорова Мария Владимировна

Азьмуко Андрей Андреевич

Молокоедов Александр Сергеевич

Беспалова Жанна Дмитриевна

Терещенко Сергей Николаевич

Масенко Валерий Павлович

Даты

2012-07-27Публикация

2010-12-21Подача