Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, кислородных насосах, электролизерах и топливных элементах в широком температурном интервале 400-900°C.
Известно использование в качестве электродного материала электрохимических устройств оксидов со структурой перовскита A1-xB1-yMx+yO3+δ (где A - РЗЭ, B - Mn, Co, Cr; M - Mg, Ba, Sr, Ca), обладающих хорошей электронной проводимостью из-за большой концентрации электронных дефектов и незначительной проводимостью по ионам кислорода, поскольку концентрация ионных дефектов в них мала. (Высокотемпературные оксидные электронные проводники для электрохимических устройств // С.Ф.Пальгуев, В.К.Гильдерман, В.И.Земцов. - М.: Наука, 1990. - 197 с.), (авт.св. 1233028, опубл. 23.05.1986 г., бюл. № 19) [1, 2].
Применение слоистого перовскита в качестве кислородного электрода приводит к снижению температуры, при которой устанавливаются термодинамические значения ЭДС на ячейке с твердым электролитом на основе ZrO2 (V.K.Gilderman, M.A.Andreeva and S.F.Palguev. La1,825Sr0,175Cu1-XFeXOY and YBa2(Cu1-XFeX)3OY for electrodes of electrochemical oxygen sensors // Sensors and Actuators B. 7. (1992) P.738-741), (патент РФ 2146360, опубл. 10.03.2000 г., бюл. №7) [3, 4].
Известно применение в качестве кислородного электрода слоистого перовскита Pr2NiO4 (S.Nishimoto, S.Takahashi, Y.Kameshima, M.Matsuda and M.Miyake. Properties of La2-XPrXNiO4 cathode for intermediate-temperature solid oxide fuel cells. // Journal of the Ceramic Society of Japan 119[3] 246-250.2011) [5]. Недостатком известного электродного материала является малая электропроводность Pr2NiO4 σmax. При температуре 510°C она составляет 127 Ом-1см-1, а при температурах 227°C и 909°C - 101 Ом-1см-1 и 88 Ом-1см-1 соответственно.
Задача настоящего изобретения заключается в получении электродного материала со слоистой структурой перовскита с хорошей проводимостью в широком температурном интервале.
Поставленная задача решается тем, что материал для кислородного электрода электрохимических устройств содержит оксиды редкоземельного элемента, щелочноземельного элемента и никель, при этом дополнительно содержит оксид меди, в качестве оксида редкоземельного элемента выбран оксид празеодим, а в качестве щелочноземельного элемента - оксид стронция в следующих соотношениях по формуле:
Pr2-XSrXCu1-YNiYO4,
где x=0,16; Y=0,9.
Для этого в подрешетку никеля слоистого перовскита дополнительно вводятся атомы меди, а в подрешетку празеодима - атомы стронция.
Новый технический результат, достигаемый заявленным изобретением, заключается в получении электродного материала со слоистой структурой перовскита с хорошей проводимостью в широком температурном интервале.
Изобретение иллюстрируется следующим примером.
В табл.1 приведены длительность и температуры обжига образцов Pr2-XSrXCuYNi1-YO4 на воздухе. В табл.2 - результаты измерения электропроводности образцов при различных температурах и давлении PO2=0,21 атм.
Исходные материалы:
- оксид празеодима (Pr6O11);
- оксид стронция SrO;
- оксид меди Cu2O;
- оксид никеля NiO.
Из данных материалов по керамической технологии синтезировали составы Pr2-XSrXCuYNi1-YO4 (x=0,16; Y=0,0; 0,1; 0,5; 0,9 и 1), представленные в табл.1.
Рентгенофазовый анализ, осуществленный после синтеза, показал, что основной фазой является слоистый перовскит. Из составов Pr2-XSrXCuYNi1-YO4 (x=0,16; Y=0,0; 0,1; 0,5; 0,9 и 1) были приготовлены образцы размера (35×5×5) мм3 для исследования электропроводности. Измерения электропроводности осуществляли 4-зондовым методом на постоянном токе. Из табл.2 видно, что образец заявленного состава Pr1,84Sr0,16Ni0,1Cu0,9O4 обладает наилучшей электропроводностью в широком диапазоне температур (от 200°C до 900°C) по сравнению с образцами других составов и прототипом.
Таким образом, получен материал для кислородного электрода электрохимических устройств со структурой слоистого перовскита, обладающий хорошей электропроводностью в широком температурном интервале в окислительных средах.
название | год | авторы | номер документа |
---|---|---|---|
МАТЕРИАЛ ДЛЯ КИСЛОРОДНОГО ЭЛЕКТРОДА ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ | 2015 |
|
RU2583838C1 |
КАТОДНЫЕ МАТЕРИАЛЫ ДЛЯ ТВЕРДООКСИДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ НИКЕЛЬСОДЕРЖАЩИХ СЛОИСТЫХ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ | 2013 |
|
RU2553460C2 |
МАТЕРИАЛ ДЛЯ КИСЛОРОДНОГО ЭЛЕКТРОДА ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ | 1997 |
|
RU2146360C1 |
КАТОДНЫЙ МАТЕРИАЛ ДЛЯ ТОТЭ НА ОСНОВЕ МЕДЬ-СОДЕРЖАЩИХ СЛОИСТЫХ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ | 2014 |
|
RU2550816C1 |
Способ модификации электродных материалов | 2017 |
|
RU2670427C1 |
Катодный материал для ТОТЭ на основе купрата празеодима | 2016 |
|
RU2630216C1 |
Электродный материал для электрохимических устройств | 2020 |
|
RU2749669C1 |
Способ жидкофазного синтеза нанокерамических материалов в системе LaO-SrO-Ni(Co,Fe)O для создания катодных электродов твердооксидного топливного элемента | 2022 |
|
RU2784880C1 |
АКТИВНЫЙ ЭЛЕКТРОД ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ С ТВЕРДЫМ ЭЛЕКТРОЛИТОМ | 1994 |
|
RU2079935C1 |
Высокопроницаемый оксидный керамический материал | 1990 |
|
SU1794931A1 |
Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, кислородных насосах, электролизерах и топливных элементах, работающих в широком температурном интервале. Согласно изобретению, материал для кислородного электрода содержит оксид празеодима и стронция, оксид меди и никеля при следующих соотношениях по формуле: Pr2-xSrxCu1-YNiYO4, где x=0,16; Y=0,9. Техническим результатом является получение электродного материала со слоистой структурой перовскита с хорошей электропроводностью в широком температурном интервале 200-900°С. 2 табл.
Материал для кислородного электрода электрохимических устройств, содержащий оксиды редкоземельного элемента, щелочноземельного элемента и никель, отличающийся тем, что он дополнительно содержит оксид меди, при этом в качестве оксида редкоземельного элемента выбран оксид празеодим, а в качестве щелочноземельного элемента - оксид стронция в следующих соотношениях по формуле:
Pr2-XSrXCu1-YNiYO4,
где X=0,16; Y=0,9.
АКТИВНЫЙ ЭЛЕКТРОД ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ С ТВЕРДЫМ ЭЛЕКТРОЛИТОМ | 1994 |
|
RU2079935C1 |
МАТЕРИАЛ ДЛЯ КИСЛОРОДНОГО ЭЛЕКТРОДА ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ | 1997 |
|
RU2146360C1 |
WO 2005122300 A2, 22.12.2005 | |||
US 5350641 A, 27.09.1994. |
Авторы
Даты
2012-08-27—Публикация
2011-07-06—Подача