Изобретение относится к подготовке флюсующих и связующих добавок в агломерационную шихту и может быть использовано при производстве железорудного агломерата.
Известен комплексный флюс для получения агломерата [1], включающий отходы химической обработки ванадиевого шлака и известняк. Для повышения восстановимости агломерата и извлечения легирующих элементов в чугун дополнительно вводят боратовую руду при следующем соотношении компонентов, мас.%: отходы химической обработки 62-70; боратовая руда 15-25; известняк -остальное. Комплексный флюс содержит, мас.%: 20,59-26,61 Fе2О3, 0,82-1,06 V2O5, 12,06-14,49 SiO2, 2,16-2,19 Аl2О3, 8,52-19,23 CaO, 1,87-3,16 MgO, 2,42-3,12 Сr2О3, 4,29-5,54 TiO2, 4,29-5,54 MnO, 0,88-2,46 В2O3, 2,78-7,78 SO3.
Недостатком комплексного флюса для получения агломерата является низкое содержание основного флюсующего оксида кальция, а также высокое содержание хрома, титана и серы, которые не позволяют получить агломерат с низким содержанием вредных примесей. Низкая флюсующая способность и низкое содержание оксида кальция не позволяют использовать комплексный флюс в качестве интенсификатора агломерационного процесса.
Наиболее близким по технической сущности и достигаемому результату является флюс и интенсификатор процесса спекания агломерационной шихты - негашеная известь [2], которая содержит, мас.%: Fe 0,1; CaO 85,76; SiO2 0,1; Аl2О3 0,4; MgO 5,5; MnO нет. Введение извести в аглошихту способствует росту удельной производительности установки на 20-50% и повышению качества агломерата.
Недостатком известного состава извести для агломерации является большой выброс в атмосферу мелких частиц извести при транспортировке и хранении, а также высокие теплоэнергетические затраты при ее производстве.
Задачей изобретения является разработка состава флюса с высокой способностью интенсификации процесса спекания железорудного агломерата, позволяющая снизить теплоэнергетические затраты при получении аглофлюса и экологически вредные выбросы при его транспортировке, хранении и использовании.
Технический результат достигается тем, что при агломерации используют агломерационный флюс, который содержит оксиды кальция, магния, кремния, алюминия, железа и марганца согласно изобретению при следующем соотношении компонентов, мас.%: оксид кальция 60,0-72,0; оксид магния 1,2-2,0; диоксид кремния 4,0-6,0; оксид алюминия 1,2-1,9; оксиды марганца 0,5-3,5; оксиды железа 12,0-25,0; прочие оксиды - остальное.
Пределы содержания оксида кальция в агломерационном флюсе обусловлены задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. Нижний предел содержания СаО в агломерационном флюсе, т.е. 60,0%, обусловлен минимально возможным содержанием СаО, обеспечивающим интенсификацию процесса спекания аглошихты и снижение теплоэнергетических затрат. При содержании СаО более 72,0% существенно повышаются экологически вредные выбросы при производстве, транспортировке и хранении агломерационного флюса.
Пределы содержания оксида магния в агломерационном флюсе обусловлены химическим составом компонентов шихты и экологически вредными выбросами при транспортировке, хранении и использовании. Нижний предел содержания МgО в агломерационном флюсе, т.е. 1,2%, обусловлен минимально возможным содержанием магнезии в компонентах шихты. При содержании МgО в агломерационном флюсе более 2,0% повышаются экологически вредные выбросы при производстве, транспортировке и хранении агломерационного флюса.
Пределы содержания диоксида кремния в агломерационном флюсе обусловлены задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. При содержании SiO2 в агломерационном флюсе менее 4,0% повышаются экологически вредные выбросы при производстве, транспортировке и хранении. При содержании SiO2 более 6,0% возрастают теплоэнергетические затраты при его получении.
Пределы содержания оксида алюминия в агломерационном флюсе обусловлены задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. При содержании Аl2O3 в агломерационном флюсе менее 1,2% возрастают экологически вредные выбросы при транспортировке, хранении и использовании. При содержании в агломерационном флюсе Аl2О3 более 1,9% повышаются теплоэнергетические затраты при его получении.
Пределы содержания оксидов марганца в агломерационном флюсе обусловлены задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. При содержании оксидов марганца в агломерационном флюсе менее 0,5% возрастают экологически вредные выбросы при производстве, транспортировке и хранении. При содержании оксидов марганца в агломерационном флюсе более 3,5% повышаются теплоэнергетические затраты при его получении.
Содержание оксидов железа в агломерационном флюсе обусловлено задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. При содержании оксидов железа в агломерационном флюсе менее 12,0% возрастают экологически вредные выбросы при производстве, транспортировке и хранении. При содержании оксидов железа в агломерационном флюсе более 25,0% повышаются теплоэнергетические затраты при его получении.
Известна шихта для производства офлюсованного марганцевого агломерата [3], которая содержит концентрат марганцевой руды, коксик, возврат, флюсующие добавки и барийсодержащий материал при следующем соотношении компонентов, мас.%: коксик 8,5-10,5; флюсующие добавки 2,5-30,0; барийсодержащий материал 0,5-25,0; возврат 15,0-25,0; концентрат марганцевой руды - остальное. В качестве концентрата марганцевой руды шихта содержит концентрат карбонатной марганцевой руды, содержащей, мас.%: Мn 26,4; SiO2 12,96; CaO 10,58; MgO 2,4; Al2O3 1,95; Feобщ 0,77; Р 0,14; потери при прокаливании 36,73.
Недостатком шихты для производства офлюсованного марганцевого агломерата является низкое содержание активного CaO и, соответственно, низкая флюсующая способность и невозможность его использования в качестве интенсификатора агломерационного процесса.
Наиболее близкой по технической сущности и достигаемому результату является шихта для производства комплексного флюса [1], содержащая отходы химической обработки ванадиевого шлака, известняк и боратовую руду при следующем соотношении компонентов, мас.%: отходы химической обработки 62-70; боратовая руда 15-25; известняк - остальное. Комплексный флюс предназначен для повышения восстановимости агломерата и извлечения легирующих элементов в чугун.
Недостатком шихты для производства комплексного флюса для получения агломерата является низкое содержание основного флюсующего оксида кальция, а также высокое содержание хрома, титана и серы, которые не позволяют получить агломерат с низким содержанием вредных примесей. Низкая флюсующая способность и низкое содержание оксида кальция не позволяют использовать комплексный флюс в качестве интенсификатора агломерационного процесса.
Задачей изобретения является разработка состава шихты для производства агломерационного флюса с высокой способностью интенсификации процесса спекания железорудного агломерата, позволяющая снизить экологически вредные выбросы при транспортировке, хранении и использовании агломерационного флюса.
Технический результат достигается тем, что шихта для производства агломерационного флюса содержит марганецсодержащий материал, известняк и твердое топливо, согласно изобретению дополнительно содержит железорудный материал при следующем соотношении компонентов, мас.%: марганецсодержащий материал 2,5-18,0; железорудный материал 10,0-25,0; твердое топливо 8,0-14,0; известняк остальное.
Пределы количества марганецсодержащего материала в шихте обусловлены задачей получения агломерационного флюса при снижении экологически вредных выбросов при транспортировке, хранении и использовании. Нижний предел количества марганецсодержащего материала составляет 2,5%, и при меньшем чем 2,5% количестве марганецсодержащего материала в шихте возрастают экологически вредные выбросы при транспортировке, хранении и использовании агломерационного флюса. Верхний предел количества марганецсодержащего материала в шихте обусловлен интенсифицирующим действием агломерационного флюса. При большем чем 18% количестве марганецсодержащего материала в шихте снижается интенсифицирующая способность агломерационного флюса.
Пределы количества железорудного материала в шихте обусловлены задачей получения агломерационного флюса и интенсификации спекания агломерационной шихты при снижении экологически вредных выбросов при транспортировке, хранении и использовании. При меньшем чем 10% количестве железорудного материала в шихте возрастают экологически вредные выбросы при транспортировке, хранении и использовании агломерационного флюса. При большем чем 25% количестве железорудного материала в шихте снижается интенсифицирующая способность агломерационного флюса.
Пределы количества твердого топлива в шихте обусловлены тепловым балансом процесса производства агломерационного флюса и экологически вредными выбросами при его производстве и использовании. Нижний предел количества твердого топлива в шихте обусловлен минимальным теплопотреблением шихты при спекании и составляет 8%. При меньшем чем 8% количестве твердого топлива в шихте возрастают экологически вредные выбросы при производстве и использовании агломерационного флюса. Верхний предел количества твердого топлива в шихте обусловлен максимальным теплопотреблением шихты при спекании и составляет 14%. При большем количестве твердого топлива в шихте снижается интенсифицирующая способность агломерационного флюса.
Известняк в шихте является основным компонентом, определяющим задачу получения агломерационного флюса с высокой способностью интенсификации процесса спекания железорудного агломерата.
Известен способ подготовки флюса для агломерационной шихты [4], включающий его предварительный обжиг и гашение водовоздушной смесью. С целью уменьшения количества непогасившихся зерен в шихте и улучшения смешивания флюса с материалом воду диспергируют в воздухе в объемном соотношении 1:(3-6) с последующей подачей полученной водовоздушной смеси струей со скоростью 0,5-2,0 м/с под углом 45-90° к направлению свободнопадающего потока обожженного продукта с перекрытием его ширины.
Недостатком известного способа подготовки флюса для агломерации является большой выброс в атмосферу мелких частиц извести и высокие теплоэнергетические затраты.
Наиболее близким по технической сущности и достигаемому результату является способ подготовки флюсов для производства офлюсованного агломерата [5], который включает раздельное дробление, сортировку каждого вида флюса и измельчение до необходимой крупности перед подачей в агломерационную шихту. После сортировки флюсы смешивают. Количество каждого вида флюса определяют в зависимости от заданного содержания оксида магния по формулам:
Оd-m=[((МgО)фл.-(МgО)изв-к)/((МgО)d-m-(МgО)изв-к)]Мтр, где Qd-m - количество доломита, т; (MgO)d-m - содержание оксида магния в доломите, %; (МgО)изв-к - содержание оксида магния в известняке, %; (МgО)фл. - заданное содержание оксида магния во флюсе, %; Мтр - грузоподъемность транспортного средства; Qизв-к=Мтр-Qd-m, где Qизв-к - количество известняка, т. Способ позволяет получить смесь флюсов с заданными пределами содержания МgО, снизить колебания по основности и содержанию МgО в офлюсованном агломерате.
Недостатком способа производства офлюсованного марганцевого агломерата является отсутствие активного СаО и, соответственно, невозможность его использования в качестве интенсификатора.
Задачей изобретения является разработка способа производства агломерационного флюса с высокой способностью интенсификации процесса спекания железорудного агломерата, позволяющая снизить экологически вредные выбросы при транспортировке, хранении и использовании агломерационного флюса.
Технический результат достигается тем, что способ производства агломерационного флюса включает шихту, состоящую из известняка, марганецсодержащего материала, железорудного материала и твердого топлива, смешивание, измельчение, окомкование шихты и спекание, согласно изобретению смешивание известняка и марганецсодержащего материала производят перед измельчением, измельченные компоненты смешивают с железорудным материалом и твердым топливом, увлажняют, окомковывают, загружают на агломашину, после спекания аглофлюс охлаждают, измельчают, подвергают гидратации путем смешивания с влажными компонентами агломерационной шихты.
Предварительное смешивание известняка с марганецсодержащим материалом обеспечивает снижение экологически вредных выбросов при транспортировке, хранении и использовании агломерационного флюса.
Совместное измельчение известняка с марганецсодержащим материалом обеспечивает высокую реакционную способность агломерационного флюса и уменьшение экологически вредных выбросов при транспортировке, хранении и использовании.
Охлаждение спеченного агломерационного флюса уменьшает экологически вредные выбросы при транспортировке и хранении.
Измельчение охлажденного агломерационного флюса повышает его интенсифицирующее действие при вводе в аглошихту.
Гидратация агломерационного флюса путем смешивания с влажными компонентами агломерационной шихты способствует повышению интенсификации процесса спекания агломерата и уменьшает экологически вредные выбросы при использовании.
Таким образом, предлагаемая совокупность существенных отличий обеспечивает заявленный технический результат, что соответствует критериям изобретения «Новизна» и «Изобретательский уровень».
Пример конкретного выполнения. В лабораторных условиях производили агломерационный флюс и испытывали его в качестве интенсификатора при получении железорудного агломерата.
Компоненты шихты для производства агломерационного флюса (содержание основных компонентов в табл.1) дозировали в заданном соотношении, смешивали, увлажняли, окомковывали и загружали в аглочашу диаметром 300 мм. После зажигания и спекания материал охлаждали, измельчали, смешивали с влажным железорудным концентратом и использовали для производства железорудного агломерата. Для сравнения результатов проводили спекания шихты по прототипу. Результаты испытаний приведены в табл.2-4.
Анализ полученных результатов показывает, что использование заявляемого агломерационного флюса, шихты и способа его производства позволяет получить флюс с высокой способностью интенсификации процесса спекания железорудного агломерата. Удельная производительность возрастает на 15,6-29,8 отн. %. Удельные теплоэнергетические затраты на производство агломерационного флюса снижаются с 10100 до 2620-3280 кДж/кг. При производстве и использовании агломерационного флюса экологически вредные выбросы (мелочь - 0,1 мм) снижаются на 4,3-45,0 абс. %.
Заявляемое техническое решение может быть реализовано в промышленности, а технический результат вытекает из совокупности существенных признаков изобретения, что свидетельствует о соответствии критерию «Промышленная применимость».
Источники информации
1. А.с. СССР №1803439 А1, заявл. 05.02.1990, опубл. 23.03.1993, бюл. №11, МПК С22В 1/16.
2. Сабинин Ю.А., Жунев А.Г., Галатонов А.Л. и др. Влияние различных интенсификаторов при спекании многокомпонентной шихты. В сб. Совершенствование технологии окускования железорудных материалов. Уралмеханобр, Свердловск, 1981. С.41-48.
3. Заявка РФ №2007122337/02, заявл. 18.06.2007, опубл. 27.12.08, бюл. №36, МПК С22В 1/00.
4. Пат. РФ №1291619, заявл. 26.04.1985, опубл. 23.02.1987, МПК С22В 47/00; 1/14.
5. Пат. РФ №2266967, заявл. 16.03.2004, опубл. 27.12.2005, С22В 1/00.
название | год | авторы | номер документа |
---|---|---|---|
ПРОМЫВОЧНЫЙ АГЛОМЕРАТ И СПОСОБ ЕГО ПРОИЗВОДСТВА | 2008 |
|
RU2403294C2 |
ВЫСОКООСНОВНЫЙ АГЛОМЕРАТ (ВАРИАНТЫ) И ШИХТА (ВАРИАНТЫ) ДЛЯ ЕГО ПРОИЗВОДСТВА | 2009 |
|
RU2410448C2 |
ШИХТА ДЛЯ ПРОИЗВОДСТВА МАРГАНЕЦСОДЕРЖАЩЕГО АГЛОМЕРАТА | 1991 |
|
RU2023032C1 |
ШИХТА ДЛЯ ПРОИЗВОДСТВА МАГНЕЗИАЛЬНОГО ЖЕЛЕЗОФЛЮСА | 2022 |
|
RU2796485C1 |
ШИХТА ДЛЯ ПРОИЗВОДСТВА МАРГАНЕЦСОДЕРЖАЩЕГО ЖЕЛЕЗОФЛЮСА | 2009 |
|
RU2410447C1 |
Способ получения высокоосновного агломерата и высокоосновный агломерат, полученный данным способом | 2023 |
|
RU2808855C1 |
Способ изготовления агломерата из окисленных руд и концентратов | 2015 |
|
RU2608046C1 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ВЫСОКООСНОВНОГО АГЛОМЕРАТА | 1999 |
|
RU2146297C1 |
МАРГАНЦЕВЫЙ ФЛЮС ДЛЯ КОНВЕРТЕРНОГО ПРОИЗВОДСТВА И ШИХТА ДЛЯ ПРОИЗВОДСТВА МАРГАНЦЕВОГО ФЛЮСА | 2016 |
|
RU2644838C2 |
Способ производства офлюсованного железорудного агломерата | 2020 |
|
RU2768432C2 |
Изобретение относится к подготовке флюсующих и связующих добавок в агломерационную шихту и может быть использовано при производстве железорудного агломерата. Агломерационный флюс содержит, мас.%: оксиды кальция 60,0-72,0; магния 1,2-2,0; кремния 4,0-6,0; алюминия 1,2-1,9; железа 12,0-25,0; марганца 0,5-3,5, прочие оксиды - остальное. Шихта для производства агломерационного флюса содержит, мас.%: марганецсодержащий материал 2,5-18,0; твердое топливо 8,0-14,0; железорудный материал 10,0-25,0; известняк остальное. Способ производства агломерационного флюса включает смешивание, измельчение, окомкование шихты и спекание. При этом шихта состоит из известняка, марганецсодержащего материала, железорудного материала и твердого топлива. Причем смешивание известняка и марганецсодержащего материала производят перед измельчением, измельченные компоненты смешивают с железорудным материалом и твердым топливом, увлажняют, окомковывают, загружают на агломашину. После спекания агломерационный флюс охлаждают, измельчают, подвергают гидратации путем смешивания с влажными компонентами агломерационной шихты. Изобретение позволяет получить флюс с высокой способностью интенсификации процесса спекания железорудного агломерата, снизить экологически вредные выбросы при транспортировке и хранении. 3 н.п. ф-лы, 4 табл., 1 пр.
1. Агломерационный флюс, содержащий оксиды кальция, магния, кремния, алюминия, железа и марганца, отличающийся тем, что содержит указанные оксиды при следующем соотношении компонентов, мас.%:
2. Шихта для производства агломерационного флюса, содержащая марганецсодержащий материал, известняк и твердое топливо, отличающаяся тем, что она дополнительно содержит железорудный материал при следующем соотношении компонентов, мас.%:
3. Способ производства агломерационного флюса по п.1, включающий смешивание, измельчение, окомкование шихты и спекание, отличающийся тем, что шихта состоит из известняка, марганецсодержащего материала, железорудного материала и твердого топлива, смешивание известняка и марганецсодержащего материала производят перед измельчением, измельченные компоненты смешивают с железорудным материалом и твердым топливом, увлажняют, окомковывают, загружают на агломашину, после спекания агломерационный флюс охлаждают, измельчают, подвергают гидратации путем смешивания с влажными компонентами агломерационной шихты.
Комплексный флюс для получения агломерата | 1990 |
|
SU1803439A1 |
СПОСОБ ПОДГОТОВКИ ФЛЮСОВ ДЛЯ ПРОИЗВОДСТВА ОФЛЮСОВАННОГО АГЛОМЕРАТА | 2004 |
|
RU2266967C1 |
Сабинин Ю.А и др | |||
Влияние различных интенсификаторов при спекании многокомпонентной шихты | |||
В сб.: Совершенствование технологии окускования железорудных материалов | |||
Уралмеханобр, Свердловск, 1981, с.41-48 | |||
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба | 1919 |
|
SU54A1 |
Авторы
Даты
2012-10-27—Публикация
2010-05-11—Подача