Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в авиационной и космической промышленности.
Алюминиевые сплавы системы Al-Li-Mg характеризуются пониженной плотностью и относительно высокой прочностью, что позволяет создавать аэрокосмическую технику с меньшей массой, а это дает возможность экономии горючего, увеличения грузоподъемности и улучшения других характеристик летательных аппаратов. Однако их широкому использованию в авиакосмическом строении препятствует ряд нерешенных проблем, к которым относятся низкая термическая стабильность, ограниченная технологическая пластичность и невысокие служебные свойства в крупнозернистом состоянии. Это затрудняет производство из них целого ряда деталей планера самолета требуемого качества. Повышение технологической пластичности позволит как прокатывать тонкие листы из этих материалов, так и изготавливать из этих листов сложные по конфигурации детали методом пневмоформовки в состоянии сверхпластичности (СП).
Известен сплав АА01420, предназначенный для изготовления деталей самолетов - преимущественно для малонагруженных деталей и содержащий, мас.%: 4,0-7,0 магний, 1,5-2,6 литий, 0,2-1,0 марганец, 0,05-0,3 цирконий, алюминий - остальное [1]. Удельный модуль (упругости) этого сплава лучше, чем у серийных сплавов, но его удельные прочности только сравнимы с широко используемой 2000 серией алюминиевых сплавов (например, сплав 2124), так что экономия веса может быть обеспечена только за счет применения критической жесткости [2].
Недостатком этого сплава являются низкие показатели сверхпластической деформации. Кроме того, недостаточная удельная прочность ограничивает возможность использовать этот сплав для конструкций летательных аппаратов, для которых прочностные характеристики являются основными.
Известен сплав с химическим составом, мас.%: 2,1-2,9 литий, 3,0-5,5 магний, 0,2-0,7 медь, алюминий - остальное, предназначенный для высоконагруженных деталей самолета и для деталей, работающих в условиях криогенных температур. Сплав обладает средним уровнем прочностных свойств, а недостатком его является низкая пластичность в термоупрочненном состоянии (относительное удлинение 3,1-5,1%) и невысокая коррозионная стойкость [3].
Наиболее близким к предлагаемому изобретению является сплав на основе алюминия, предназначенный для силовых авиационных конструкций, в том числе сварных деталей крыла и фюзеляжа. Он применяется для изготовления деталей сложной формы в режиме сверхпластической формовки и содержит, мас.%: 1,9-2,3 лития, 4,5-6,0 магния, 0,025-0,1 скандия, 0,09-0,15 циркония, алюминий - остальное [4].
Недостатки этого сплава заключаются в следующем:
- низкий уровень как прочности, так и пластичности;
- высокое содержание Mg приводит к тому, что при нагреве под закалку до 450°С в сплаве с высоким содержанием магния не удается полностью растворить S1-фазу. Соответственно, чтобы не допустить присутствия существенной объемной доли S1-фазы после закалки, что приводит к частичному растворению упрочняющей δ'-фазы, при старении проводят нагрев под закалку до температур 490°С. Такая высокая температура закалки приводит к образованию поверхностного слоя, обедненного литием, что отрицательно сказывается на надежности конструкций из этого материала.
Задачей предлагаемого изобретения является разработка сплава системы Al-Li-Mg, обладающего низкой плотностью и сочетающего в себе комбинацию высокой прочности и пластичности.
Для решения поставленной задачи предлагается сплав на основе алюминия, содержащий литий, магний, скандий, цирконий, причем он содержит следующее соотношение компонентов, мас.%: литий 1,7-1,9, магний 4,0-4,4, скандий 0,14-0,16, цирконий 0,09-0,1, при соотношении скандий/цирконий=1,4-1,6, необходимое для когерентности границ частиц Аl3(Sc, Zr) с матрицей, алюминий - остальное.
Предложенный сплав отличается от прототипа тем, что содержит следующее соотношение компонентов, мас.%:
при этом соотношение скандий/цирконий = 1,4-1,6.
Предлагаемый химический состав сплава обеспечивает достижение низкой плотности и сочетание комбинации высокой прочности и пластичности, высоких удлинений (свыше 1000%), что позволит изготавливать детали сложной формы в режиме сверхпластической формовки.
В составе сплава компоненты проявляют себя следующим образом.
Каждый процент литья снижает удельный вес алюминиевых сплавов на 3%, повышает модуль упругости на 6% и обеспечивает в сплавах значительный эффект упрочнения после закалки и искусственного старения. Литий растворяется в алюминии в значительных количествах (5,2% макс.). Добавка магния и лития позволяет получить материал с пониженным удельным весом и повышенным модулем упругости также приводит к образованию тройной фазы Al2LiMg, вызывающей твердорастворное упрочнение сплава. Цирконий является антирекристаллизатором и модификатором, измельчающим зерно. Добавки циркония незначительно влияют на механические свойства и коррозионную стойкость, а также приводят к измельчению зерна и повышению температуры рекристаллизации сплава. Небольшая добавка скандия повышает прочностные характеристики сплава. Но уже при этом количестве он может создавать с алюминием метастабильную фазу Al2Zr со структурой L12, β'-фаза. Скандий является самым сильным модификатором зеренной структуры сплава. Алюминиевые сплавы, легированные одновременно скандием и цирконием, обладают хорошей комбинацией прочности и пластичности, поскольку в них формируются наночастицы фазы Аl3(Zr,Sc) с когерентными границами.
Пример осуществления
Выплавку сплава проводят в тигельных печах под флюсом.
Сплав подвергается упрочняющей термической обработке. Отливки помещают в печь, нагретую до температуры 450°С в печи с выдержкой 2 часа, затем закаливают в масло. После чего проводят искусственное старение при температуре 120°C с выдержкой в течение 5 часов и охлаждением с печью.
Сплавы системы Al-Li-Mg являются термообрабатываемыми алюминиевыми сплавами. Особенности термической обработки алюминий-литиевых сплавов связаны с наличием основной упрочняющей фазы δ' (Al3Li) с упорядоченным строением и обусловлены морфологией распада твердого раствора, природой выделяющих фаз и соотношением их объемной доли. Количество фазовых составляющих в зависимости от вида и режима термообработки в алюминий-литий-магниевых сплавах изменяется в широких пределах. Основные фазы, которые могут выделяться на границах зерен и в матрице в сплавах системы Al-Li-Mg в процессе термообработки - S1 (Al2LiMg), δ' (Аl3Li), Al3(Sc,Zr). Количество δ'-фазы в различных промышленных алюминий-литиевых сплавах может изменяться от 2 до 9% в зависимости от режима старения.
Высокая прочность достигается в том случае, если по объему зерен гомогенно выделяется δ'-фаза с когерентными границами. Причем весь Li должен быть переведен в твердый раствор при нагреве под закалку до предплавильной температуры.
Распад твердого раствора сплава системы Al-Li-Mg происходит с образованием (наряду с δ'-фазой) выделений двух типов: 1 - тонких пластинчатых фаз на границах зерен; 2 - компактных частиц, которые по мере развития старения прежде всего образуются на границах зерен и на межфазных границах нерастворенных частиц. Согласно диаграмме состояния этими частицами, очевидно, является стабильная S1-фаза. Образование и рост тонких и компактных частиц S1-фазы приводят к обеднению прилегающих участков матрицы магнием и литием с растворением метостабильной δ'-фазы. Это обуславливает появление обедненных литием зон, свободных от выделения δ'-фазы около границ зерен и у частиц S1-фазы в зерне. По мере достижения равновесного состояния, например при 200-250°С, δ'-фаза полностью растворяется.
Полученный сплав подвергли испытаниям с определением временного сопротивления (σB), относительного удлинения (δ) при комнатной температуре. Результаты испытаний полученного и известных сплавов приведены в таблице. Сравнительный состав сплавов приведен в таблице.
Данные таблицы показывают, что предлагаемый сплав имеет по сравнению с прототипом [3] повышение прочностных характеристик на 100 МПа и увеличение пластичности на 6% при комнатной температуре. В сравнении с аналогами [1, 2] прочностные характеристики изменяются незначительно, однако пластичность гораздо выше. Кроме того, у аналогов в заданном интервале проявляется нестабильность механических свойств по сравнению с предлагаемым сплавом, где механические свойства в заданном интервале не изменяются и составляют 540 МПа и 15%.
В предложенном сплаве занижено содержание лития и магния, что приводит к гомогенному выделению δ'-фазы в матрице и достаточному количеству образования S1-фазы, которое не приводит к растворению метостабильной δ'-фазы.
Таким образом, термически упрочняемые полуфабрикаты и изделия из предлагаемого сплава обладают уникальным сочетанием прочности и пластичности при комнатной температуре.
Предлагаемый химический состав сплава обеспечивает сохранение низкой плотности и достижение сочетания высокой прочности и пластичности, соответственно это позволит достигать высоких удлинений при повышенных температурах (свыше 1000%), что позволит изготавливать детали методом пневмоформовки в состоянии сверхпластичности для авиационной и космической промышленности.
Источники информации
1. Патент СВ №1172736, опубл. 03.12.1969.
2. Алиева С.Г. Промышленные алюминиевые сплавы: Справ. Изд. / С.Г.Алиева, М.Б.Альтман, С.М.Амбарцумян и др. - М.: Металлургия, 1984. - 528 с.
3. Патент US №4584173, публ. 22.04.1986.
4. Авиационные материалы: Справочник в 12-ти томах. - 7-е изд., перераб. и доп./ Под общ. ред. Е.Н.Каблова. - М.: ВИАМ, 2009. - 170 с.
название | год | авторы | номер документа |
---|---|---|---|
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2009 |
|
RU2412270C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 1998 |
|
RU2133295C1 |
СПЛАВ С НИЗКОЙ ПЛОТНОСТЬЮ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ ПРОДУКТА ИЗ ЭТОГО СПЛАВА | 1992 |
|
RU2109835C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 2005 |
|
RU2296176C1 |
КОРРОЗИОННО-СТОЙКИЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ, СПОСОБ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТОВ И ИЗДЕЛИЕ ИЗ НЕГО | 1999 |
|
RU2163938C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2001 |
|
RU2208655C2 |
Высокопрочный алюминиевый сплав системы Al-Zn-Mg-Cu и изделие, выполненное из него | 2022 |
|
RU2804669C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУФАБРИКАТОВ ИЗ ЭТОГО СПЛАВА | 2000 |
|
RU2180930C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО | 2020 |
|
RU2771396C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2022 |
|
RU2800435C1 |
Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в авиационной промышленности. Сплав на основе алюминия содержит, мас.%: литий 1,7-1,9, магний 4,0-4,4, скандий 0,14-0,16, цирконий 0,09-1,1, при соотношении скандий/цирконий=1,4-1,6, алюминий - остальное. Предложенный состав сплава обеспечивает достижение низкой плотности в сочетании с высокой прочностью и пластичностью, что позволяет достигать степени удлинения свыше 1000% при повышенных температурах и изготавливать детали сложной формы в режиме сверхпластической формовки. 1 табл., 1 пр.
Сплав на основе алюминия, содержащий литий, магний, скандий, цирконий, отличающийся тем, что он содержит следующее соотношение компонентов, мас.%: литий 1,7-1,9, магний 4,0-4,4, скандий 0,14-0,16, цирконий 0,09-1,1, при соотношении скандий/цирконий=1,4-1,6, алюминий - остальное.
US 5055457 А, 08.10.1991 | |||
US 7879162 В2, 01.02.2011 | |||
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ ЭЛЕКТРОДОВ ФОТОПРИЕМНЫХ И СВЕТОИЗЛУЧАЮЩИХ УСТРОЙСТВ | 1998 |
|
RU2123538C1 |
US 4661172 A, 28.04.1987 | |||
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 1998 |
|
RU2133295C1 |
Авторы
Даты
2012-11-27—Публикация
2011-05-31—Подача