СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ЦЕМЕНТА МЕДИЦИНСКОГО НАЗНАЧЕНИЯ Российский патент 2013 года по МПК A61L27/28 A61L24/02 A61L24/10 

Описание патента на изобретение RU2475273C1

Изобретение относится к медицине и может быть использовано для получения полимерного цемента, обладающего антибактериальными свойствами, используемого при эндопротезировании, фиксации отломков кости, для замещения отсутствующей костной ткани, а также в челюстно-лицевой хирургии, пластической хирургии и стоматологии.

Известен способ получения полимерного цемента, включающий смешивание рецептурного количества порошкообразного полимера, жидкого мономера с добавлением антибиотика гентамицин гидрохлорида, либо гентамицин сульфата (патент US 4059684, оп. 22.11.1977). Получаемый известным способом полимерный цемент предназначен для формирования костноподобных структур искусственного происхождения произвольной формы и одновременной профилактики развития инфекционного процесса в зоне контакта между полимерным цементом в зоне контакта «цемент-кость» за счет присутствия антибиотика в составе композиции изделия.

Недостатком известного способа является низкое качество целевого продукта, а именно низкие антибактериальные свойства, связанные с наличием в составе полимерного цемента антибиотика гентамицин гидрохлорида либо гентамицин сульфата, который в современных условиях может оказаться неэффективным ввиду целого ряда факторов, включающих в себя эмиссию антибиотика в окружающие ткани и устойчивость микроорганизмов к конкретному антибиотику.

Наиболее близким к заявляемому способу - прототипом, является способ получения полимерного цемента, включающий смешивание порошкообразного полимера и жидкого мономера с добавлением антибиотика гентамицин гидрохлорида в количестве 0,5-1,0 мас.% от общего количества компонентов композиции (патент RU 2195320, оп. 27.12.2002).

Недостатком известного способа является низкое качество целевого продукта, обусловленное следующими причинами:

1) Отсутствие диффузии антибиотика в ткани при хорошо гомогенизированном цементе ввиду отсутствия пор в структуре полимерного цемента (A.S.Baker, L.W.Greenham. Release of gentamicin from acrylic bone cement. Elution and diffusion studies. J. Bone Joint Surg. Am. 1988; 70: 1551-1557).

2) Недостаточная эффективность используемых антибиотиков в случае наличия резистентной к ним микробиоты либо низкая концентрация импрегнированного в цемент антибиотика или ее нелинейное снижение с течением времени, что может привести к формированию резистентных штаммов патогенных и условно-патогенных микроорганизмов.

3) Необходимость увеличения концентрации антибиотика при неэффективности элиминации патогенной микробиоты, что ведет к нарушению гомогенности структуры цемента и ухудшению его прочностных свойств.

4) Возможность токсических побочных явлений, связанных с наличием в составе полимерного цемента импрегнированного антибиотика, в частности гентамицина.

5) При наличии аллергических реакций на конкретный антибиотик, входящий в состав цемента, невозможно быстрое удаление аллергена из макроорганизма.

Задачей изобретения является повышение качества целевого продукта за счет повышения антибактериальных свойств полимерного цемента.

Техническим результатом решения поставленной задачи является обеспечение возможности получения полимерного цемента, обладающего повышенной антибактериальной активностью в отношении штаммов патогенных и условно-патогенных микроорганизмов, ответственных за развитие инфекционно-воспалительного процесса в месте имплантации изделия из цемента.

Поставленная задача достигается заявляемым способом, заключающимся в следующем.

Смешивают коммерчески доступные и разрешенные для медицинского применения компоненты композиции полимерного цемента, включающие порошкообразный полимер и жидкий мономер, смесь перемешивают, охлаждают для снижения теплового выхода экзотермической реакции полимеризации до температуры 4-10°С и добавляют раствор, содержащий бактериофаг или смесь из нескольких различных бактериофагов, обладающих литической активностью против возбудителя(ей) инфекционного процесса бактериальной этиологии с концентрацией частиц бактериофага, равной не менее 106 БОЕ/мл (бляшкообразующие единицы на миллилитр) в количестве 5,0-6,5 мас.%. Далее полимерный цемент повторно перемешивают и придают нужную форму изделию.

В преимущественном варианте, проводят подбор специфического бактериофага(ов), для чего предварительно осуществляют типирование (определение) возбудителя инфекционного процесса бактериальной этиологии у конкретного больного путем культивирования микроорганизма(ов), полученного из взятого у пациента образца биоматериала, с тестируемым набором бактериофагов.

В частном случае, используют заранее подготовленный бактериофаг или смесь из нескольких различных штаммов бактериофагов, проявляющих свою активность в отношении наиболее частых возбудителей инфекционных процессов в месте имплантации изделий из полимерного цемента, таких как бактерии рода Pseudomonas, Staphylococcus и Bacillus. При этом используют либо коммерчески доступный бактериофаг(и), либо бактериофаг(и), находящийся (депонированный) в доступных коллекциях микроорганизмов.

Сырьем для антибактериального компонента служат фаголизаты микробных культур, подвергнутые стерилизации мембранной фильтрацией через фильтры с диаметром пор 0,22 мкм.

В результате получают полимерный цемент медицинского назначения с размерами микропор порядка 100-200 нм, обладающий антибактериальной активностью в отношении штаммов патогенных и условно-патогенных микроорганизмов, ответственных за развитие инфекционно-воспалительного процесса в месте имплантации изделия, либо системы медицинского назначения. Приготовленный полимерный цемент может храниться в течение 10 дней при температуре 6-10°С без потери антибактериальной активности.

Определяющими отличительными признаками заявляемого способа по сравнению с прототипом являются:

1. В качестве антибактериального компонента в цемент добавляют раствор, содержащий бактериофаг или смесь из нескольких различных бактериофагов, обладающих литической активностью против возбудителя(ей) инфекционного процесса бактериальной этиологии с концентрацией частиц бактериофага, равной не менее 106 БОЕ/мл в количестве 5,0-6,5 мас.%, что позволяет получить полимерный цемент с повышенными антибактериальными свойствами, одновременно обладающий такими качествами, как отсутствие аллергических реакций на бактериофаг, прекращение действия бактериофага после лизиса патогенных бактерий с последующей самостоятельной элиминацией из макроорганизма.

2. Раствор, содержащий бактериофаг или смесь из нескольких различных бактериофагов, обладающих литической активностью, вносят в реакционную смесь после ее охлаждения до 4-10°С, что позволяет понизить температуру экзотермической реакции полимеризации с 110-120°С до 45-50°С и исключить инактивацию активности бактериофага(ов) против возбудителя(ей) инфекционного процесса.

3. В качестве бактериофага(ов), обладающего литической активностью, используют бактериофаг(и) против бактерий рода Pseudomonas, Staphylococcus или Bacillus, что позволяет расширить спектр и специфичность действия используемого бактериофага(ов).

4. Преимущественно используют бактериофаг или смесь из нескольких различных бактериофагов, обладающих литической активностью, индивидуально подобранный для конкретного патогена, для чего предварительно проводят типирование возбудителя инфекционного процесса бактериальной этиологии у конкретного пациента для наработки соответствующего ему литического бактериофага, что позволяет усилить антибактериальные свойства целевого продукта и обеспечить индивидуальный подбор литического бактериофага для специфической фаготерапии и фагопрофилактики инфекционно-воспалительного процесса бактериальной этиологиии.

Наличие в структуре полимерного цемента микропор размерами порядка 100-200 нм позволяет использовать такой цемент как носитель бактериофага(ов), обладающего(их) литической активностью, размеры пор которого достаточны для размещения бактериофага(ов) полимерного цемента, что в дальнейшем обеспечивает эмиссию бактериофага(ов) из полимерного цемента как на границе «цемент-кость», так и в окружающие ткани в концентрациях, достаточных для поддержания минимальной, подавляющей инфекцию, концентрации бактериофага в тканях, окружающих имплантируемое устройство или систему медицинского назначения.

На фиг.1 представлено изображение внутренней структуры полимерного цемента в образце размером 2×2 мкм, полученное с помощью атомно-силовой микроскопии, в композиции которого отсутствуют модифицирующие компоненты, например бактериофаги, но отчетливо визуализируется пористость, достаточная для размещения в таких порах бактериофагов, представляющих собой наноразмерные частицы.

Изобретение иллюстрируется следующими примерами конкретного выполнения.

Пример 1

Предварительно провели типирование возбудителя инфекционного процесса бактериальной этиологии для конкретного больного и соответствующего ему бактериофага с литической активностью. Далее смешали 1 г стерильного порошкообразного полимера полиметилметакрилата [Poly [(Methyl Methacrylate)-Co-Styrene] Copolymer], 0,5 мл жидкого мономера метилметакрилата (Methyl methacrylate). Смесь перемешали и охладили на ледяной бане в течение 5 минут до температуры 7°С. Затем добавили 0,079 мл раствора, содержащего патогенспецифичный коммерчески доступный «стафилококковый бактериофаг» против Staphylococcus aureus 209 (производства ФГУП «НПО «Микроген», Россия) с концентрацией частиц бактериофага 1,1×107 БОЕ/мл в количестве 5,0 мас.%. Произвели тщательное перемешивание и придали нужную форму полимерному цементу.

В результате получили полимерный цемент следующего состава, мас.%:

Полиметилметакрилат (порошкообразный полимер) 63,3

Метилметакрилат (мономер) 31,7

Бактериофаг против Staphylococcus aureus 209 с количеством частиц бактериофага 1,1×107 БОЕ 5,0

Пример 2

Предварительно провели типирование возбудителя инфекционного процесса бактериальной этиологии для конкретного больного и наработку соответствующего ему бактериофага с литической активностью. Далее смешали 1 г стерильного порошкообразного полимера полиметилметакрилата [Methyl methacrylate - styrene copolymer and Poly methacrylate], 0,5 мл жидкого мономера метилметакрилата (Methyl methacrylate), смесь перемешали и охладили на ледяной бане в течение 10 минут до температуры 4°С. Затем добавили 0,1 мл раствора, содержащего патогенспецифичный бактериофаг против Pseudomonas aeruginosa, депонированный в коллекции НИИ ККМ ГНЦ ВБ «Вектор», г.Новосибирск под регистрационным номером V-357 с концентрацией частиц бактериофага 1,4×107 БОЕ/мл в количестве 6,25 мас.%. Произвели тщательное перемешивание и придали нужную форму полимерному цементу.

В результате получили полимерный цемент следующего состава, мас.%:

Полиметилметакрилат (порошкообразный полимер) 62,5

Метилметакрилат (мономер) 31,25

Бактериофаг против Pseudomonas aeruginosa V-357 с количеством частиц бактериофага 1,4×107 БОЕ 6,25

Пример 3

Приготовление полимерного цемента осуществляли аналогично примеру 2, за исключением того, что в качестве бактериофага использовали смесь бактериофагов, содержащую 0,052 мл бактериофага против Pseudomonas aeruginosa, депонированного в коллекции НИИ ККМ ГНЦ ВБ «Вектор», г. Новосибирск под регистрационным номером V-357 и 0,052 мл коммерчески доступного «стафилококкового бактериофага» против Staphylococcus aureus 209 с концентрацией частиц бактериофагов 1,25×107 БОЕ/мл.

В результате получили полимерный цемент следующего состава, мас.%:

Полиметилметакрилат (порошкообразный полимер) 62,3

Метилметакрилат (мономер) 31,2

Смесь бактериофагов против Pseudomonas aeruginosa и Staphylococcus aureus 209 с количеством частиц бактериофага 1,25×107 БОЕ 6,5

Пример 4

Предварительно провели типирование возбудителя инфекционного процесса бактериальной этиологии для конкретного больного соответствующего ему бактериофага с литической активностью. Далее смешали 1 г стерильного порошкообразного полимера полиметилметакрилата [Methyl methacrylate - styrene copolymer и Poly methacrylate], 0,5 мл жидкого мономера метилметакрилата (Methyl methacrylate), смесь перемешали и охладили на ледяной бане в течение 5 минут до температуры 10°С. Затем добавили 0,1 мл раствора, содержащего патогенспецифичный бактериофаг против Bacillus species, депонированный в коллекции ИХБФМ СО РАН, г. Новосибирск, под регистрационным номером ph41 с концентрацией частиц бактериофага 6,8×108 БОЕ/мл в количестве 6,25 мас.%. Произвели тщательное перемешивание и придали нужную форму полимерному цементу.

В результате получили полимерный цемент следующего состава, мас.%:

Полиметилметакрилат (порошкообразный полимер) 62,5

Метилметакрилат (мономер) 31,25

Бактериофаг против Bacillus species ph41 с количеством частиц бактериофага 6,8×108 БОЕ 6,25

Пример 5

Для исследования пролонгированного действия бактериофага использовали культуру клеток Pseudomonas aeruginosa и полимерный цемент медицинского назначения, содержащий бактериофаг против данной культуры с количеством частиц бактериофага 8,0×106 БОЕ. Инкубирование культуры клеток Pseudomonas aeruginosa с полимерным цементом, содержащим бактериофаг, проводили при температуре 37°С в течение 18-20 ч. Подсчет вирусных частиц вели методом двухслойного агара. Количество вирусных частиц бактериофага, добавленного в цемент, определяли в культуральной жидкости. Концентрация частиц бактериофага составила 1,8×108 БОЕ/мл.

Затем цемент, содержащий бактериофаг, десятикратно отмывали в 1 мл 0,9%-ного раствора NaCl при интенсивном встряхивании на вортексе в течение 1-2 мин. Остатки жидкости удаляли стерильной фильтровальной бумагой. Фракции из аликвот 10 образцов, полученных после отмывки полимерного цемента, исследовали на присутствие фаговых частиц. Все аликвоты содержали вышеназванный бактериофаг. Цемент, отмытый от бактериофага, помещали в пробирку с культурой Pseudomonas aeruginosa. Инкубацию культуры клеток Pseudomonas aeruginosa с отмытым от бактериофага полимерным цементом проводили при температуре 37°С в течение 18-20 ч. Подсчет вирусных частиц проводили методом двухслойного агара. Концентрация частиц бактериофага с отмытого полимерного цемента составила 1×108 БОЕ/мл.

Таким образом, показано, что бактериофаг активно элюируется из пор полимерного цемента в окружающую среду, при этом литическая активность бактериофага сохраняется.

Пример 6

Проводили определение длительности сохранения бактерицидной активности в образце полимерного цемента медицинского назначения, содержащего бактериофаг. Образец полимерного цемента, содержащего бактериофаг против Pseudomonas aeruginosa V-357 с количеством частиц бактериофага 8,0×106 БОЕ, выдерживали в течение десяти суток на воздухе при температуре +10°С, а затем определяли количество частиц бактериофага. Для этого образец помещали в пробирку с культурой Pseudomonas aeruginosa и культивировали при 37°С в течение 18-20 ч. Концентрация частиц бактериофага в образце с цементом, хранившимся в течение 10 суток, составила 4,4×109 БОЕ/мл.

Из примера 5 видно, что бактериофаг Pseudomonas aeruginosa V-357, добавленный в цемент, сохраняет свою литическую активность в течение десяти суток при температуре +10°С. Вещества, входящие в состав полимерного цемента, не инактивируют бактериофаг.

Предлагаемым способом можно готовить полимерные цементы медицинского назначения, содержащие бактериофаг, а также смесь бактериофагов против различных инфекционных агентов, таких как бактерии родов Pseudomonas, Staphylococcus, Bacillus и др. Использование предлагаемого способа обеспечивает получение полимерного цемента, одновременно обладающего такими качествами, как отсутствие аллергических реакций на бактериофаг, отсутствие механизмов резистентности со стороны патогенных и условно-патогенных микроорганизмов, выделенных из образца биоматериала от пациента, возможность воздействия бактериофага на бактериальную биопленку с ее частичным разрушением, прекращение действия бактериофага после лизиса патогенных бактерий с последующей самостоятельной элиминацией из макроорганизма.

Похожие патенты RU2475273C1

название год авторы номер документа
ШТАММ БАКТЕРИОФАГА Pseudomonas aeruginosa, ИСПОЛЬЗУЕМЫЙ В КАЧЕСТВЕ ОСНОВЫ ДЛЯ ПРИГОТОВЛЕНИЯ АСЕПТИЧЕСКОГО СРЕДСТВА ПРОТИВ СИНЕГНОЙНОЙ ПАЛОЧКИ 2011
  • Козлова Юлия Николаевна
  • Репин Владимир Евгеньевич
  • Анищенко Владимир Владимирович
  • Власов Валентин Викторович
  • Ганичев Дмитрий Александрович
  • Семёнов Сергей Александрович
  • Пугачев Владимир Георгиевич
  • Таранов Олег Святославович
RU2455355C1
Способ профилактики инфекций, связанных с оказанием медицинской помощи, у пациентов, находящихся в хроническом критическом состоянии 2023
  • Гречко Андрей Вячеславович
  • Петрова Марина Владимировна
  • Черневская Екатерина Александровна
  • Белобородова Наталья Владимировна
  • Гуркова Марина Михайловна
  • Зурабов Александр Юрьевич
  • Зурабов Федор Михайлович
  • Юрьев Михаил Юрьевич
  • Кузовлев Артем Николаевич
  • Яковлев Алексей Александрович
RU2818910C1
Способ лечения и профилактики рецидивов нозокомиальной пневмонии 2021
  • Белобородова Наталья Владимировна
  • Гречко Андрей Вячеславович
  • Гуркова Марина Михайловна
  • Зурабов Александр Юрьевич
  • Кузовлев Артем Николаевич
  • Петрова Марина Владимировна
  • Попова Валентина Михайловна
  • Черневская Екатерина Александровна
  • Яковлев Алексей Александрович
  • Зурабов Федор Михайлович
RU2794585C2
ШТАММ БАКТЕРИОФАГА Staphylococcus aureus SA20, ОБЕСПЕЧИВАЮЩИЙ РАЗРУШЕНИЕ БИОПЛЕНОК, ОБРАЗУЕМЫХ БАКТЕРИЯМИ РОДА Staphylococcus 2014
  • Козлова Юлия Николаевна
  • Морозова Вера Витальевна
  • Тикунова Нина Викторовна
  • Рябчикова Елена Ивановна
  • Курильщиков Александр Михайлович
  • Власов Валентин Викторович
RU2565824C1
СРЕДСТВО ДЛЯ ПОМЕЩЕНИЙ ДЕЗОДОРИРУЮЩЕЕ С СОДЕРЖАНИЕМ БАКТЕРИОФАГОВ 2014
  • Васильев Дмитрий Аркадьевич
  • Шестаков Андрей Геннадьевич
  • Жуков Андрей Викторович
RU2574023C2
Антибактериальная композиция (варианты) и применение белка в качестве антимикробного средства, направленного против грамотрицательных бактерий: Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae и Salmonella typhi (варианты) 2019
  • Антонова Наталия Петровна
  • Васина Дарья Владимировна
  • Гинцбург Александр Леонидович
  • Ткачук Артем Петрович
  • Гущин Владимир Алексеевич
RU2730615C1
Антибактериальная композиция (варианты) и применение белка в качестве антимикробного средства, направленного против бактерий Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Salmonella typhi и Staphylococcus haemolyticus (варианты) 2019
  • Антонова Наталия Петровна
  • Васина Дарья Владимировна
  • Гинцбург Александр Леонидович
  • Ткачук Артем Петрович
  • Гущин Владимир Алексеевич
RU2730613C1
Антибактериальная композиция (варианты) и применение белка в качестве антимикробного средства, направленного против бактерий Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Salmonella typhi и Staphylococcus haemolyticus (варианты) 2019
  • Антонова Наталия Петровна
  • Васина Дарья Владимировна
  • Гинцбург Александр Леонидович
  • Ткачук Артем Петрович
  • Гущин Владимир Алексеевич
RU2730614C1
Модифицированный эндолизин и антибактериальные композиции на его основе для лечения инфекций, вызванных бактериями Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli 2023
  • Антонова Наталия Петровна
  • Васина Дарья Владимировна
  • Гущин Владимир Алексеевич
  • Григорьев Игорь Васильевич
  • Усачев Евгений Валерьевич
  • Золотарь Анастасия Николаевна
  • Кузнецова Надежда Анатольевна
  • Шидловская Елена Владимировна
  • Почтовый Андрей Андреевич
  • Клейменов Денис Александрович
  • Ремизов Тимофей Андреевич
  • Захарова Анастасия Андреевна
  • Токарская Елизавета Александровна
  • Логунов Денис Юрьевич
  • Гинцбург Александр Леонидович
RU2813626C1
Штамм бактериофага Pseudomonas aeruginosa N 323 (500317), предназначенный для приготовления моно- и поливалентных лечебно-профилактических препаратов бактериофагов 2019
  • Ворошилова Наталья Николаевна
  • Полыгач Ольга Александровна
RU2717451C1

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ЦЕМЕНТА МЕДИЦИНСКОГО НАЗНАЧЕНИЯ

Изобретение относится к медицине. Описан способ получения полимерного цемента медицинского назначения, включающий смешивание рецептурного количества порошкообразного полимера, жидкого мономера, антибактериального компонента и перемешивание смеси, при этом в качестве антибактериального компонента используют раствор, содержащий бактериофаг или смесь из нескольких различных бактериофагов, обладающих литической активностью, в концентрации не менее 106 БОЕ/мл, в количестве 5,0-6,5 мас.%, который вносят в цемент после охлаждения смеси до температуры 4-10°С. Преимущественно используют бактериофаг(и) против бактерий рода Pseudomonas, Staphylococcus, Bacillus. В частном случае, используют бактериофаг(и), индивидуально подобранный(е) для конкретного патогена, для чего предварительно проводят типирование возбудителя инфекционного процесса бактериальной этиологии у конкретного пациента. Способ обеспечивает повышение качества целевого продукта за счет повышения антибактериальных свойств полимерного цемента. 3 з.п. ф-лы, 1 ил., 6 пр.

Формула изобретения RU 2 475 273 C1

1. Способ получения полимерного цемента медицинского назначения, включающий смешивание рецептурного количества порошкообразного полимера, жидкого мономера, антибактериального компонента и перемешивание смеси, отличающийся тем, что в качестве антибактериального компонента используют раствор, содержащий бактериофаг или смесь из нескольких различных бактериофагов, обладающих литической активностью, в концентрации не менее 106 БОЕ/мл, в количестве 5,0-6,5 мас.%, при этом антибактериальный компонент вносят в цемент после охлаждения смеси до температуры 4-10°С.

2. Способ по п.1, отличающийся тем, что в качестве порошкообразного полимера и жидкого мономера используют любые коммерчески доступные компоненты, разрешенные к применению в медицине.

3. Способ по п.1, отличающийся тем, что в качестве бактериофага(ов), обладающего литической активностью, используют бактериофаг(и) против бактерий рода Pseudomonas, Staphylococcus, Bacillus.

4. Способ по п.1, отличающийся тем, что используют бактериофаг или смесь из нескольких различных бактериофагов, обладающих литической активностью, индивидуально подобранные для конкретного патогена, для чего предварительно проводят типирование возбудителя инфекционного процесса бактериальной этиологии у конкретного пациента.

Документы, цитированные в отчете о поиске Патент 2013 года RU2475273C1

ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ХИРУРГИЧЕСКОГО КОСТНОГО ЦЕМЕНТА 2001
  • Кондратьев В.М.
  • Глинских А.Ф.
  • Навалихин В.Д.
  • Корнилов Н.В.
  • Хомяк Н.И.
  • Машков В.М.
  • Мамаева Е.Г.
RU2195320C2
US 4059684 A, 22.11.1977
СПОСОБ КРЕПЛЕНИЯ КОНЦОВ ДЕРЕВЯННЫХ БРУСЬЕВ И ШПАЛ, В ЦЕЛЯХ ПРЕДОХРАНЕНИЯ ИХ ОТ РАСТРЕСКИВАНИЯ 1924
  • Гуленко В.О.
SU7812A1

RU 2 475 273 C1

Авторы

Козлова Юлия Николаевна

Самохин Александр Геннадьевич

Павлов Виталий Викторович

Репин Владимир Евгеньевич

Даты

2013-02-20Публикация

2012-04-02Подача