СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА Российский патент 2013 года по МПК C04B38/00 C04B35/486 C04B35/111 

Описание патента на изобретение RU2476406C2

Изобретение относится к технологии получения пористого керамического материала из ультрадисперсного порошка Аl2О3 или ультрадисперсного порошка твердых растворов на основе ZrO2 (Mg, Y) и гидрозолей [Аl(OН)3] или [Zr(OH)4]. Изобретение предназначено для получения пористых керамических материалов для искусственных эндопротезов костной ткани.

Известен способ получения пористых керамических изделий (ЕР 1348681, С04 38/10, опубл. 01.10.2003)[1], в котором используют порошок оксида циркония или оксида алюминия, в том числе и субмикронного размера, смешанный с гидрозолем гидроксида алюминия. В способе используется гидрозоль гидроксида алюминия с концентрацией 0,2-5 мас.% (в пересчете на оксид алюминия).

Недостатком известного способа является то, что известный способ, во-первых, направлен на изготовление крупногабаритных изделий сложной формы методом литья и, во-вторых, не может быть использован для изготовления искусственных эндопротезов костной ткани, так как из описания способа следует, что для его реализации использованы химические соединения, вредные организму человека (см. [1], абзац [0027], [0030]).

Также известен способ приготовления суспензии, содержащей золь диоксида циркония и пористые керамические изделия, полученные с использованием указанной суспензии (US5275759, B01J 13/00, опубл. 04.01.1994) [2], в частности приготовление формовочной массы из мелких огнеупорных частиц оксида циркония (стабилизированного оксидом магния или оксидом иттрия), смешанных с золем гидроксида циркония. Рекомендуемое соотношение огнеупорных частиц и гидрозоля (1-5) : 1.

Недостатком известного способа является то, что золь диоксида циркония, полученный известным способом, предназначен для получения пористых керамических материалов для изготовления пресс-формы для литья титана и титановых сплавов. Известная суспензия, содержащая золь диоксида циркония, не может быть использована для изготовления искусственных эндопротезов костной ткани, так как также содержит химические соединения, вредные организму человека (см. пункты 7 и 8 формулы изобретения [2]).

Наиболее близким аналогом заявленного изобретения по совокупности существенных признаков является способ получения пористого керамического материала для использования в качестве заменителя твердой костной ткани, известный из US 2005/0239628, С04 В 38/06, опубл. 27.10.2005 [3]. В известном способе спекаемый керамический материал, например оксид алюминия или оксид циркония, смешивают с вязким полимерным золем, полученную смесь формуют, сушат и спекают.

Недостатком известного пористого керамического материала является присутствие в нем после спекания углеводородов - продуктов выгорания полимера, что делает его не очень пригодным для изготовления медицинских эндопротезов.

Задачей предлагаемого изобретения является разработка способа получения пористого керамического материала с высокими прочностными свойствами для применения его в медицинских целях, в частности для изготовления эндопротезов костной ткани.

Материалы, используемые в медицине для изготовления эндопротезов, должны обладать химической чистотой, химической и коррозионной стойкостью в биологической среде, износостойкостью, термостойкостью, механической совместимостью с замещаемой тканью. В ряде случаев, для обеспечения жесткого контакта эндопротеза с костью за счет ее прорастания внутрь имплантата, эндопротезы костной ткани должны обладать развитой пористостью (не менее 20%). Однако присутствие пор в структуре керамического материала сопровождается катастрофическим снижением прочности. Известные пористые керамические материалы не обладают сочетанием развитой пористости и высокой прочности.

Разработанный керамический материал обладает высокими прочностными характеристиками и развитой пористостью. Так при пористости 20-45% предел прочности на сжатие керамического материала на основе Аl2О3 достигает 800-1000 МПа, а керамического материала на основе ZrO2 (Mg, Y) 800-650 МПа.

Указанный технический результат достигается тем, что способ получения пористого керамического материала включает приготовление смеси из керамического порошка и добавки, выполняющей функцию пластификатора и порообразователя, формование из порошковой смеси изделия требуемой конфигурации и последующее спекание. В качестве керамического порошка используют ультрадисперсный порошок Аl2О3, или ультрадисперсный порошок твердых растворов на основе ZrO2 с растворенными в нем компонентами MgO или Y2O3, а в качестве пластификатора и порообразователя используют гидрозоль А1(ОН)3 или Zr(OH)4 в количестве от 1 до 50 об.% в объеме смеси. Формование изделия требуемой конфигурации проводят при давлении 12-25 кН. Термообработку изделия проводят в интервале температур 1450-1600°С с изотермической выдержкой в течение 1-5 часов.

Сущность изобретения заключается в том, что сначала готовят смесь. Для этого исходный керамический порошок, содержащий оксиды Zr, Mg, Y или Аl, смешивают с гидрозолем Аl(ОН)3 или Zr(OH)4, формуют изделие и подвергают термообработке на воздухе по заданному режиму в области температур 1450-1600°С. Термообработка приводит к переходу гидрозоля Аl(OН)3 в Аl2О3,(Zr(OH)4 в ZrO2 Мелкодисперсный гомогенно распределенный между частицами ультрадисперсного порошка гидрозоль алюминия Аl(ОН)3 или циркония Zr(OH)4 является естественным пластификатором и порообразователем, который нет необходимости удалять, так как он становится одним из компонентов пористой керамики. Наличие таких пластификаторов, как гидрозоль Аl(ОН)3 или Zr(OH)4, позволяет применять различные методы формования, что открывает возможность получать компактные керамические изделия требуемых формы и размеров. Использование гидрозолей Аl(ОН)3 или Zr(OH)4 в качестве порообразователей исключает вредное влияние углерода, а также других примесей, которые остаются в керамических изделиях после удаления известных органических пластификаторов и порообразующих добавок.

При применении керамического материала в медицинских целях следует учитывать, что организм человека представляет собой агрессивную среду с различными значениями рН, особенно после травм и оперативных вмешательств, и многочисленные имплантируемые материалы не могут бесконечно оставаться хорошо переносимыми организмом. Коррозия, напряжения и процессы химической деградации, возникающие вследствие воздействия на эндопротез жидкостей и тканей организма, не только изменяют свойства имплантата - образующиеся продукты могут быть токсичными. Все это, в свою очередь, может спровоцировать возникновение реакции отторжения трансплантата, поэтому чистота применяемого керамического материала стоит на первом месте.

Объемная доля гидрозоля Аl(ОН)3 или Zr(OH)4 в порошковой смеси от 1 до 50 об.% обеспечивает получение пористости в готовом изделии от 20 до 45%.

При введении в порошковую керамическую смесь больше 50 об.% гидрозоля Аl(ОН)3 или Zr(OH)4 прочность керамического изделия становится недостаточной для использования в медицинских или технических целях. А при введении в порошковую смесь меньше 1 об.% гидрозоля Аl(ОН)3 или Zr(OH)4 не достигается требуемая пористость керамического изделия.

Примеры конкретного выполнения

Пример 1

Для проведения эксперимента использовалась смесь ультрадисперсного порошка с размером частиц 0.2-0.5 мкм твердого раствора ZrO2, стабилизированного 5 вес.% Y2О3 и гидрозоля Zr(OH)4. Было взято содержание гидрозоля Zr(OH)4 в объеме смеси 50% (50 см3), при этом ультрадисперсный порошок ZrO2 (Y) взят для указанного соотношения в количестве 64.0 г (при насыпной плотности 1.28 г/см3, объем ультрадисперсного порошка составляет 50 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 12 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1600°С в течение 1 часа. Проведенные измерения после спекания изделия показали: пористость 30%, прочность на сжатие 650 МПа, средний размер пор 2,2 мкм.

Пример 2

Для проведения эксперимента использовалась смесь ультрадисперсного порошка с размером частиц 0.2-0.5 мкм твердого раствора ZrO2, стабилизированного 3 вес.% MgO и гидрозоля Аl(ОН)3. Было взято содержание гидрозоля Аl(ОН)3 в объеме смеси 1% (1 см3), при этом ультрадисперсный порошок ZrO2 (Mg) взят для указанного соотношения в количестве 126.72 г (при насыпной плотности 1.28 г/см3, объем ультрадисперсного порошка составляет 99 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 16 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1520°С в течение 3 часов. Проведенные измерения после спекания изделия показали прочность на сжатие 650 МПа, пористость 28%, средний размер пор 1,8 мкм.

Пример 3

Для проведения эксперимента использовалась смесь ультрадисперсного порошка с размером частиц 0.2-0.5 мкм твердого раствора ZrO2, стабилизированного 20 вес.% MgO и гидрозоля Zr(OH)4. Было взято содержание гидрозоля Zr(OH)4 в объеме смеси 10% (10 см3), при этом ультрадисперсный порошок ZrO2 (Mg) взят для указанного соотношения в количестве 115.2 г (при насыпной плотности 1.28 г/см3, объем ультрадисперсного порошка составляет 90 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 18 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1500°С в течение 1 часа. Проведенные измерения после спекания изделия показали: пористость 25%, прочность на сжатие 670 МПа, средний размер пор 1,4 мкм.

Пример 4

Для проведения эксперимента использовалась смесь ультрадисперсного порошка Аl2О3 с размером частиц 0.2-0.5 мкм и гидрозоль Аl(ОН)3. Было взято содержание гидрозоля Аl(ОН)3 в объеме смеси 25% (25 см3), при этом ультрадисперсный порошок Аl2О3 взят для указанного соотношения в количестве 43.5 г (при насыпной плотности 0.58 г/см3, объем ультрадисперсного порошка составляет 75 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 20 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1450°С в течение 5 часов. Проведенные измерения после спекания изделия показали: пористость 40%, прочность на сжатие 900 МПа, средний размер пор 1,4 мкм.

Пример 5

Для проведения эксперимента использовалась смесь ультрадисперсного порошка Аl2О3 размером 0.2-0.5 мкм и гидрозоля Zr(OH)4. Было взято содержание гидрозоля Zr(OH)4 в объеме смеси 5% (5 см3), при этом ультрадисперсный порошок Аl2О3 взят для указанного соотношения в количестве 55.1 г (при насыпной плотности 0.58 г/см3, объем ультрадисперсного порошка составляет 95 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 25 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1600°С в течение 4 часов. Проведенные измерения после спекания изделия показали: пористость 25%, прочность на сжатие 800 МПа, средний размер пор 1,9 мкм.

Похожие патенты RU2476406C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КЕРАМИЧЕСКОГО БИОМАТЕРИАЛА НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ 2015
  • Буякова Светлана Петровна
  • Григорьев Михаил Владимирович
  • Кульков Сергей Николаевич
  • Саблина Татьяна Юрьевна
  • Рыжова Любовь Николаевна
RU2585291C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОЙ КЕРАМИКИ С БИМОДАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ ПОРИСТОСТИ 2017
  • Буяков Алесь Сергеевич
  • Буякова Светлана Петровна
  • Кульков Сергей Николаевич
RU2691207C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ ИЗДЕЛИЙ СФЕРИЧЕСКОЙ ФОРМЫ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ 2019
  • Родаев Вячеслав Валерьевич
  • Жигачев Андрей Олегович
  • Васюков Владимир Михайлович
  • Головин Юрий Иванович
RU2731751C1
КОМПОЗИЦИОННЫЙ КОСТНО-КЕРАМИЧЕСКИЙ ИМПЛАНТАТ НА ОСНОВЕ КЕРАМИЧЕСКОГО МАТЕРИАЛА СИСТЕМЫ ОКСИД ЦИРКОНИЯ - ОКСИД АЛЮМИНИЯ 2013
  • Садовой Михаил Анатольевич
  • Кирилова Ирина Анатольевна
  • Подорожная Валентина Тимофеевна
  • Рожнова Ольга Михайловна
  • Мамонова Екатерина Владимировна
RU2542496C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОЙ БИОАКТИВНОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДА ЦИРКОНИЯ 2015
  • Медков Михаил Азарьевич
  • Грищенко Дина Николаевна
RU2595703C1
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОЙ ПОРИСТОЙ КЕРАМИКИ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ ДЛЯ ЭНДОПРОТЕЗИРОВАНИЯ 2020
  • Федоренко Надежда Юрьевна
  • Калинина Марина Владимировна
  • Шилова Ольга Алексеевна
  • Пономарева Мария Антоновна
RU2741918C1
Способ получения многослойных металлокерамических покрытий на поверхности эндопротезов 2021
  • Гончаров Виталий Степанович
  • Гончаров Максим Витальевич
  • Криштал Михаил Михайлович
  • Колсанов Александр Владимирович
  • Николаенко Андрей Николаевич
  • Ушаков Андрей Александрович
  • Иванов Виктор Вячеславович
  • Шорин Иван Сергеевич
RU2790959C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЕДИНИЧНОГО ВЫСОКОТЕМПЕРАТУРНОГО ТОПЛИВНОГО ЭЛЕМЕНТА И ЕГО КОМПОНЕНТОВ: КАТОДА, ЭЛЕКТРОЛИТА, АНОДА, ТОКОПРОХОДА, ИНТЕРФЕЙСНОГО И ЭЛЕКТРОИЗОЛИРУЮЩЕГО СЛОЕВ 1997
  • Севастьянов В.В.
  • Морозов В.В.
  • Никитин С.В.
  • Липилин А.С.
  • Родионов И.В.
  • Севастьянов А.В.
  • Ятлук Ю.Г.
RU2125324C1
Способ изготовления керамических пьезоматериалов из нано- или ультрадисперсных порошков фаз кислородно-октаэдрического типа 2018
  • Нестеров Алексей Анатольевич
  • Панич Евгений Анатольевич
RU2702188C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ ВЫСОКОПРОЧНОЙ КЕРАМИКИ 2016
  • Дедов Николай Владимирович
  • Жиганов Александр Николаевич
  • Точилин Сергей Борисович
  • Русаков Игорь Юрьевич
RU2626866C1

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Способ получения пористого керамического материала включает приготовление смеси из керамического порошка и добавки, выполняющей функцию пластификатора и порообразователя, формование из порошковой смеси изделия требуемой конфигурации и последующее спекание. В качестве керамического порошка используют ультрадисперсный порошок Аl2О3 или ультрадисперсный порошок твердых растворов на основе ZrO2 с растворенными в нем компонентами MgO или Y2O3, а в качестве пластификатора и порообразователя используют гидрозоль Аl(ОН)3 или Zr(OH)4 в количестве от 1 до 50 об.% от объема смеси. Для придания смеси формовочных свойств добавляют дистиллированную воду. Формование изделия требуемой конфигурации проводят прессованием при давлении 12-25 кН, спекают при температуре 1450-1600°С с изотермической выдержкой в течение 1-5 часов. Технический результат изобретения - повышение прочностных характеристик материала, обладающего развитой пористостью. При пористости 20-45% предел прочности на сжатие керамического материала на основе Аl2О3 достигает 1000-800 МПа, а керамического материала на основе ZrO2(Mg,Y) 800-650 МПа. 5 пр.

Формула изобретения RU 2 476 406 C2

Способ получения пористого керамического материала, включающий приготовление смеси из керамического порошка и добавки, выполняющей функцию пластификатора и порообразователя, формование из нее изделия требуемой конфигурации и последующее спекание, отличающийся тем, что в качестве керамического порошка используют ультрадисперсный порошок твердых растворов на основе ZrO2 (Mg, Y) или ультрадисперсный порошок Al2O3, а в качестве пластификатора и порообразователя используют гидрозоль А1(OН)3 или Zr(OH)4 в количестве от 1 до 50% в объеме смеси, добавляют, перемешивая, дистиллированную воду для придания смеси формовочных свойств, далее проводят формование изделия прессованием под давлением от 12 до 25 кН, а спекание изделия осуществляют при температуре 1450-1600°С.

Документы, цитированные в отчете о поиске Патент 2013 года RU2476406C2

Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
Устройство для уравновешивания аксиально-поршневой машины 1986
  • Маслов Игорь Валентинович
  • Перепечко Юрий Петрович
SU1348681A1
US 5275759 А, 04.01.1994
RU 2008112615 А, 27.10.2009
US 6869445 В1, 22.03.2005
SU 1034353 А, 27.09.2000.

RU 2 476 406 C2

Авторы

Мельникова Галина Васильевна

Жуков Илья Александрович

Кульков Сергей Николаевич

Буякова Светлана Петровна

Молчунова Лилия Михайловна

Соболев Игорь Александрович

Козлова Анна Валерьевна

Клевцова Екатерина Владимировна

Даты

2013-02-27Публикация

2010-11-18Подача