СПОСОБ ПОЛУЧЕНИЯ ТРИЭТОКСИСИЛАНА Российский патент 2013 года по МПК C07F7/02 

Описание патента на изобретение RU2476435C1

Изобретение относится к химии кремнийсодержащих соединений, а именно к разработке эффективного способа получения триэтоксисилана, пригодного для производства моносилана для полупроводниковой техники и солнечной энергетики, а также для различных кремнийорганических жидкостей и полимеров.

Известно два способа получения триэтоксисилана: этерификация трихлорсилана этиловым спиртом и прямое взаимодействие металлургического кремния с этанолом в среде высококипящего растворителя в присутствии медьсодержащего катализатора.

По первому способу триэтоксисилан получается с низкими выходами и содержит значительное количество примесей (в том числе хлоридов) из-за коррозии оборудования, что в принципе не позволяет применять этот продукт без сложной многостадийной очистки для получения моносилана особой чистоты. Кроме этого, использование в данной технологии токсичных хлоридов не удовлетворяет современным экологическим требованиям.

«Прямой синтез» триэтоксисилана из металлургического кремния и этанола теоретически позволяет получать продукт высокого качества, свободный от электроактивных примесей, так как в процессе не используются вещества, вызывающие коррозию оборудования. Способ является также экологически чистым, поскольку в нем не участвуют токсичные хлорсодержащие соединения.

Впервые о возможности «прямого синтеза» алкоксисиланов из кремния и спиртов в присутствии медьсодержащего катализатора было сообщено Е.Г.Роховым еще в 1948 г., однако только в 1972 году был запатентован способ прямого синтеза алкоксисиланов, заключавшийся в пропускании паров алифатических спиртов при 250-300°С через смесь кремния с 10% меди, для активации предварительно прогретую в токе водорода при температуре более 1000°С в течение 14 часов (патент US 3641077, МПК C07F 7/00, 7/02, 7/22, 1972).

К недостаткам метода следует отнести низкие выходы триалкоксисиланов, длительное время и высокую температуру активации контактной массы.

Из патентной литературы известно, что ведение «прямого синтеза» в среде полиароматических углеводородов в присутствии хлорида меди (I) позволяет существенно увеличить выход триэтоксисилана (патент US 3775457, МПК C07F 7/04, 7/06, 1973). При этом для активации кремния в этанол вводили до 0,2% фтористого водорода.

Существенными недостатками такой активации является сильная коррозия оборудования и загрязнение целевого триэтоксисилана фтором.

В изобретении (патент US 4931578, МПК C07F 7/18, 1990) описано применение в качестве катализаторов «прямого синтеза» галогенидов меди (I, II), формиата, ацетата, ацетилацетоната меди или оксидов меди, что также позволяет достичь хороших выходов триалкоксисиланов. В данной работе активацию реакционной массы проводят в течение 15 часов при интенсивном перемешивании в три этапа: сначала нагревают ее в течение часа до 200°С в токе азота, затем в течение 10 часов барботируют смесь азота с галоидным алкилом при 200-260°С и, наконец, прекратив подачу галоидного алкила, позволяют массе «созреть» в токе азота в течение 4-х часов.

Недостатком данного способа активации является ее большая длительность, что снижает производительность оборудования. Вторым существенным недостатком метода является загрязнение целевого триалкоксисилана следами галоидного алкила, что в дальнейшем приводит к снижению качества моносилана.

Таким образом, для получения триэтоксислана, пригодного для производства моносилана особой чистоты, необходим такой режим проведения активации реакционной массы, который бы исключал введение в процесс посторонних активных реагентов, способных вызвать коррозию оборудования и загрязнить целевой продукт.

Наиболее близким к предлагаемому способу и принятым нами в качестве прототипа является способ получения триэтоксисилана, описанный в патенте (US 5728858, МПК C07F 7/16, 1998), в котором активация реакционной массы проводится при непрерывном перемешивании в токе водорода при 150-250°С в течение 0,5-1,5 часа. Водород инертен в коррозионном отношении, легко удаляется из реакционной массы и не загрязняет целевой триэтоксисилан. В качестве катализатора использовались гидроксиды меди.

Недостатком способа является нестабильность выбранных катализаторов и сильная зависимость их активности от срока хранения и технологии получения. Кроме этого, при восстановлении таких катализаторов водородом получается вода, которая отрицательно сказывается на выходе триалкоксисиланов.

Задачей настоящего изобретения является увеличение выхода триэтоксисилана, повышение чистоты триэтоксисилана, сокращение времени активации реакционной массы и повышение производительности процесса.

Указанная задача решается тем, что предложен способ получения триэтоксисилана прямым взаимодействием металлургического кремния с сухим этиловым спиртом в среде высококипящего растворителя в присутствии медьсодержащего катализатора, отличающийся тем, что для повышения эффективности процесса проводят двухстадийную активацию реакционной массы, которую вначале выдерживают в токе водорода при 180-250°С в течение 0,5-2,5 часов при перемешивании, а затем - в тех же условиях в атмосфере инертного газа без перемешивания.

Технический результат достигается за счет использования режима активации реакционной массы, в котором для повышения конверсии кремния и выхода триэтоксисилана, а также для сокращения времени реакции смесь кремния с 2-5% катализатора перемешивают в среде Therminol-66 в течение 0,5-2,5 часов в токе водорода при 180-250°С, затем барботирование водорода прекращают и выдерживают массу при остановленной мешалке без перемешивания в токе инертного газа (азота или аргона) в течение 0,5-2,5 часов, после чего включают мешалку и производят дозирование спирта.

Такой способ активации реакционной массы позволяет на первом этапе в результате восстановления хлорида меди (I) водородом получить высокоактивные наноразмерные частицы меди, генерерованию которых в последнее время посвящено большое количество патентов (патент US 2003/0065204, МПК C07F 7/16, 2003). На втором этапе активации при отсутствии перемешивания и непосредственном контакте частиц катализатора с кремнием происходит диффузия наноразмерных частиц меди в кремний с образованием большого количества активных по отношению к спирту, как было показано Дж. Акером с сотрудниками (J.Acker, S.Kother, K.M.Lewis, K.Bohmhammel. The Reactivity in the system CuCl-Si related to the activation of silicon in the Direct Synthesis. Silicon Chemistry.-2003, vol.2, No.3, p.195-206), центров силицида меди Cu3Si.

Пропускание водорода в течение менее 0,5 часа нецелесообразно, поскольку не успевает пройти восстановление медьсодержащего соединения, а увеличение времени барботирования водорода более 2,5 часов снижает производительность оборудования, поэтому оптимальным временем выдержки в токе водорода является 1-1,5 часа.

Оптимальное время выдержки реакционной массы без перемешивания составляет 1-2 часа, поскольку выдержка в течение менее 0,5 часа не приводит к повышению конверсии кремния и выхода триэтоксисилана, а увеличение времени выдержки более 2,5 часов снижает производительность оборудования, не оказывая уже существенного влияния на конверсию кремния и выход триэтоксисилана. Способ осуществляют следующим образом.

Пример 1 (по прототипу).

В реактор из нержавеющей стали SS316L объемом 1000 мл, снабженный мешалкой, охлаждаемым до минус 50°С нисходящим холодильником, капилляром для ввода водорода и капилляром для ввода спирта, загружают 100 г кремния, 200 г Therminol-66 и 2 г хлорида меди (I). Продувают реактор аргоном, затем включают обогрев реактора и мешалку. По достижении температуры реакционной смеси 180°С при непрерывном перемешивании начинают барботировать водород со скоростью 30 мл/мин, доводя температуру реакционной массы до 240-250°С. Барботирование водорода продолжают в течение 1,5 часа, после чего подачу водорода прекращают и продолжают перемешивание реакционной смеси при этой температуре в токе аргона еще 1,5 часа. Затем с помощью дозировочного насоса вводят в реактор этиловый спирт с расходом 50 мл/час в токе аргона с расходом 30 мл/мин. Образующиеся продукты реакции конденсируют с помощью нисходящего холодильника, собирают в охлаждаемом до минус 50°С приемнике и анализируют методом газовой хроматографии. Реакция заканчивается за 16 часов. Конверсия кремния составляет 53,2%, а выход триэтоксисилана - 38,4%.

Пример 2.

Процесс проводят аналогично примеру 1, но после пропускания водорода останавливают мешалку и выдерживают реакционную массу в токе аргона или азота в течение 1,5 часа без перемешивания, а затем включают мешалку и начинают дозирование спирта. Реакция завершается за 17 часов. Конверсия кремния составляет 60,6%, а выход триэтоксисилана - 45,7%.

Пример 3.

Процесс проводят аналогично примеру 1, но после пропускания водорода останавливают мешалку и выдерживают реакционную массу в токе аргона или азота в течение 2,5 часа без перемешивания, а затем включают мешалку и начинают дозирование спирта. Реакция завершается за 17 часов. Конверсия кремния составляет 61,2%, а выход триэтоксисилана - 45,1%.

Пример 4.

Процесс проводят аналогично примеру 1, но после пропускания водорода останавливают мешалку и выдерживают реакционную массу в токе аргона или азота в течение 0,5 часа без перемешивания, а затем включают мешалку и начинают дозирование спирта. Реакция завершается за 16 часов. Конверсия кремния составляет 50,2%, а выход триэтоксисилана - 36,6%.

Пример 5.

Процесс проводят аналогично примеру 2, но водород пропускают в течение 0,5 часа. Реакция завершается за 14 часов. Конверсия кремния составляет 40,3%, а выход триэтоксисилана - 33,0%.

Пример 6.

Процесс проводят аналогично примеру 2, но водород пропускают в течение 2,5 часа. Реакция заканчивается за 17 часов. Конверсия кремния составляет 50,2%, а выход триэтоксисилана - 41,4%.

Пример 7.

Процесс проводят аналогично примеру 2, но с 5 г хлорида меди (I) в качестве катализатора. Реакция завершается за 17 часов. Конверсия кремния составляет 61,8%, а выход триэтоксисилана - 45,4%.

Похожие патенты RU2476435C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ АЛКОКСИСИЛАНОВ 2016
  • Музафаров Азиз Мансурович
  • Чистовалов Сергей Михайлович
  • Котов Валерий Михайлович
  • Темников Максим Николаевич
  • Анисимов Антон Александрович
  • Жемчугов Павел Владимирович
  • Молодцова Юлия Алексеевна
  • Холодков Дмитрий Николаевич
  • Жильцов Андрей Сергеевич
RU2628299C1
КАТАЛИЗАТОР ПРЯМОГО СИНТЕЗА ТРИЭТОКСИСИЛАНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2011
  • Пармон Валентин Николаевич
  • Адонин Николай Юрьевич
  • Зайковский Владимир Иванович
  • Просвирин Игорь Петрович
  • Мельгунов Максим Сергеевич
  • Стороженко Павел Аркадьевич
  • Монин Евгений Алексеевич
  • Быкова Ирина Александровна
  • Русаков Сергей Леонардович
  • Мартынов Петр Олегович
  • Рогожин Андрей Валентинович
RU2468865C1
СПОСОБ ПОЛУЧЕНИЯ АЛКОКСИСИЛАНОВ 1998
RU2196142C2
СПОСОБ ПОЛУЧЕНИЯ СИЛАНОВ ТИПА RSiH ДИСПРОПОРЦИОНИРОВАНИЕМ ГИДРИДАЛКОКСИСИЛАНОВ ТИПА RSiH(OR') (ГДЕ n=0; 1; R=Me; R'=Me, Et) И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Монин Евгений Алексеевич
  • Стороженко Павел Аркадьевич
  • Быкова Ирина Александровна
  • Русаков Сергей Леонардович
RU2479350C2
РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ АЛКОКСИСИЛАНОВ 2017
  • Музафаров Азиз Мансурович
  • Чистовалов Сергей Михайлович
  • Котов Валерий Михайлович
  • Темников Максим Николаевич
  • Анисимов Антон Александрович
  • Жемчугов Павел Владимирович
RU2671732C1
СПОСОБ ПОЛУЧЕНИЯ АЛКОКСИСИЛАНОВ 1999
  • Горшков А.С.
  • Копылов В.М.
  • Маркачева А.А.
  • Поливанов А.Н.
RU2157375C1
СПОСОБ ПОЛУЧЕНИЯ АЛКОКСИСИЛАНОВ 2003
  • Горшков А.С.
  • Маркачева А.А.
  • Стороженко П.А.
RU2235726C1
СПОСОБ ПОЛУЧЕНИЯ АЛКОКСИСИЛАНОВ 2005
  • Горшков Александр Сергеевич
  • Стороженко Павел Аркадьевич
RU2277537C1
СПОСОБ ПОЛУЧЕНИЯ МОНОСИЛАНА ВЫСОКОЙ ЧИСТОТЫ 1998
  • Белов Е.П.(Ru)
  • Герливанов В.Г.(Ru)
  • Заддэ В.В.(Ru)
  • Клещевникова С.И.(Ru)
  • Корнеев Н.Н.(Ru)
  • Лебедев Е.Н.(Ru)
  • Пинов А.Б.(Ru)
  • Тсуо Саймон
  • Рябенко Е.А.(Ru)
  • Стребков Д.С.(Ru)
  • Чернышев Е.А.(Ru)
RU2129984C1
СПОСОБ ПОЛУЧЕНИЯ АЛКОКСИСИЛАНОВ 2009
  • Завин Борис Григорьевич
  • Котов Валерий Михайлович
  • Пряхина Татьяна Алексеевна
RU2417228C1

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ ТРИЭТОКСИСИЛАНА

Изобретение относится к способам получения триэтоксисилана, пригодного для производства моносилана для полупроводниковой техники и солнечной энергетики, а также для различных кремнийорганических жидкостей и полимеров. Предложен способ получения триэтоксисилана прямым взаимодействием металлургического кремния с сухим этиловым спиртом в среде высококипящего растворителя в присутствии катализатора хлорида меди (I), причем повышение эффективности процесса достигается двухстадийной активацией смеси кремния, растворителя и катализатора. На первой стадии смесь выдерживают в токе водорода при 180-250°С в течение 0,5-2,5 часов при перемешивании. На второй - выдерживают реакционную массу в тех же условиях в атмосфере инертного газа без перемешивания. Технический результат - предложенный способ активации реакционной массы позволяет достигать конверсии кремния более 75% и селективности по триэтоксисилану свыше 80%. 7 пр.

Формула изобретения RU 2 476 435 C1

Способ получения триэтоксисилана прямым взаимодействием металлургического кремния с сухим этиловым спиртом в среде высококипящего растворителя в присутствии катализатора хлорида меди (I), отличающийся тем, что для повышения эффективности процесса проводят двухстадийную активацию смеси кремния, растворителя и катализатора, которую вначале выдерживают в токе водорода при 180-250°С в течение 0,5-2,5 ч при перемешивании, а затем в тех же условиях в атмосфере инертного газа без перемешивания.

Документы, цитированные в отчете о поиске Патент 2013 года RU2476435C1

US 5728858 А1, 17.03.1998
Люковое закрытие 1979
  • Манилов Анатолий Павлович
SU835876A1
JP 63027493 А, 05.02.1988
СПОСОБ ПОЛУЧЕНИЯ АЛКОКСИСИЛАНОВ 1998
RU2196142C2
US 3775457 А, 27.11.1973
RU 2009117196 А, 10.01.2011.

RU 2 476 435 C1

Авторы

Монин Евгений Алексеевич

Стороженко Павел Аркадьевич

Быкова Ирина Александровна

Русаков Сергей Леонардович

Даты

2013-02-27Публикация

2011-12-13Подача