Изобретение относится к области металлургии, к способам производства холоднокатаной стали с высокими вытяжными свойствами для холодной штамповки и может быть использовано при изготовлении сталей, применяемых в автомобилестроении.
В последнее время кроме требований обеспечения высокой штампуемости все больше предъявляются требования к повышенному уровню прочности, в частности, в результате упрочнения при сушке лакокрасочных покрытий на готовых деталях - ВН-эффекта (bake-hardening effect). При этом в зависимости от оборудования конкретных заводов, главным образом, от режимов термической обработки подбирается определенная система легирования стали и остальные технологические параметры производства. Так, при использовании отжига в колпаковых печах для обеспечения требуемой величины ВН-эффекта часто легируют сталь повышенным количеством фосфора, что может приводить к охрупчиванию границ зерен. Поэтому очень важно выбрать оптимальный химический состав стали и другие технологические параметры, чтобы обеспечить наиболее высокий комплекс свойств стали при ее минимальной стоимости. Кроме того, все более важное значение приобретает повышение коррозионной стойкости автолистовой стали, в частности, в условиях атмосферного воздействия.
Известен способ производства холоднокатаной стали для глубокой вытяжки, включающий выплавку стали, содержащей, мас.%:
углерод - 0,001÷0,006
кремний - 0,002÷0,020
марганец - 0,07÷0,30
фосфор - 0,005÷0,020
сера - 0,005÷0,010
алюминий - 0,015÷0,050
азот - 0,002÷0,006
титан - 0,02÷0,08
ниобий - 0,005÷0,060
кислород - 0,001÷0,005
железо и неизбежные примеси - остальное,
при этом суммарное содержание алюминия и титана составляет 0,07÷0,12%, отношение содержания алюминия к содержанию кислорода составляет не менее 5,0, а минимальное содержание титана рассчитывают из соотношения
(Timin)=3,43(N)+2,4(S),
разливку, горячую прокатку, смотку полос в рулоны при 710-730°С, травление, холодную прокатку, отжиг в колпаковых печах при 700°С и дрессировку. Как вариант, после травления и холодной прокатки проводят цинкование, непрерывный отжиг при 850°С и дрессировку.
Способ направлен на повышение штампуемости стали, независимо от режима термической обработки и нанесения защитного покрытия, повышение коррозионной стойкости (Патент РФ №2233905 МПК С22С 38/14, 10.08.2004).
Недостатком такого способа является отсутствие гарантированной величины ВН-эффекта, особенно после отжига в колпаковых печах, а также сравнительно высокая стоимость стали, связанная с необходимостью обеспечения сверхнизкого содержания углерода, легирования титаном и ниобием, а также недостаточная коррозионная стойкость стали (без нанесения цинкового покрытия).
Известен способ производства листовой стали, включающий непрерывную разливку слябов из стали, содержащей, мас.%:
углерод - 0,002÷0,007
кремний - 0,005÷0,050
марганец - 0,08÷0,16
алюминий - 0,01÷0,05
титан - 0,05÷0,12
фосфор - более 0,015
сера - не более 0,010
хром, никель, медь - не более 0,04 каждого
азот - не более 0,006
железо - остальное,
нагрев слябов до 1150÷1240°С, горячую прокатку с температурой конца прокатки не ниже 870°С, охлаждение водой до 550÷730°С, смотку в рулоны, травление, холодную прокатку с суммарным обжатием не менее 70%, отжиг в колпаковой печи при 700÷750°С в течение 11÷34 часов и дрессировку.
Способ направлен на улучшение вытяжных свойств и увеличение выхода кондиционной листовой стали (Патент РФ №2197542 МПК С21D 8/04 27.01.2003).
Недостаток способа: высокое содержание титана, низкое содержание фосфора не позволяют обеспечить упрочнение стали в результате ВН-эффекта. Сталь также имеет недостаточную стойкость против атмосферной коррозии.
Наиболее близким к заявляемому является способ производства холоднокатаных полос из сверхнизкоуглеродистой стали, включающий выплавку стали, содержащую, мас.%:
углерод - 0,006-0,10
марганец - 0,01-0,15
фосфор ≤0,07
азот ≤0,0025
алюминий ≤0,04
ниобий - 0,031÷0,06
сера ≤0,008
железо и неизбежные примеси - остальное,
разливку, нагрев слябов до 1150÷1200°С, горячую прокатку с температурой конца прокатки при 910÷920°С, смотку при 740÷750°С, холодную прокатку с суммарным обжатием не менее 70%, нагрев полосы со скоростью 10÷20°С/с до температуры отжига, определяемой в зависимости от отношения Nb/C по формулам
при 3,1≤Nb/C≤4,65
Tотж=7,52·(Nb/C)2+45,55·Nb/C+791°C,
при 4,65≤Nb/С≤10
Тотж=1,75·(Nb/C)2+33,81·Nb/C+730°C,
где Nb и С - содержание ниобия и углерода в стали, мас.%, выдержку при температуре отжига в течение 50÷60 с и охлаждение со скоростью 15÷25°С/с до 340÷360°С.
Способ направлен на стабилизацию комплекса механических свойств при обеспечении категории весьма особо сложной вытяжки с одновременным получением упрочняющего эффекта (ВН-эффекта) не менее 40 МПа (Патент РФ №2212457 МПК С21D 8/04, 20.09.2003 г. - прототип).
Недостатком данного способа является возможность его применения только для непрерывных термических агрегатов. При термической обработке в колпаковых печах, когда температура отжига не превышает 730÷750°С, требуемая величина ВН-эффекта не обеспечивается. Кроме того, коррозионная стойкость такой стали низкая.
Задачей данного изобретения является оптимизация химического состава и других технологических параметров производства холоднокатаной стали с обеспечением технического результата в виде повышения коррозионной стойкости и склонности к ВН-эффекту, в том числе при термической обработке в колпаковых печах при сохранении высокой штампуемости.
Технический результат достигается тем, что в известном способе производства холоднокатаной стали для холодной штамповки, включающем выплавку стали, содержащей углерод, марганец, фосфор, серу, алюминий, азот, ниобий, железо и неизбежные раскислители и примеси, разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку и рекристаллизационный отжиг, согласно изобретению выплавляют сталь, дополнительно содержащую медь и титан при следующем соотношении компонентов, мас.%:
углерод - 0,002÷0,015
кремний - 0,005÷0,050
марганец - 0,05÷0,50
фосфор - 0,005÷0,09
сера - 0,003÷0,020
медь - 0,1÷0,6
алюминий - 0,02÷0,07
азот - 0,002÷0,007
титан - не более 0,040
ниобий - не более 0,060
железо и неизбежные примеси - остальное,
при выполнении следующих условий:
Сэф.=[С]-СTi-CNb≥0,0006% (1),
где Сэф. - эффективное содержание углерода, не связанного титаном или ниобием;
[С] - общее содержание углерода в стали,
СTi - содержание углерода, связанного титаном: при отношении содержания титана [Ti] к содержанию [N] [Ti]/[N]<3,43 CTi=0, при [Ti]/[N]≥3,43 СTi=([Ti ]-3,43N)/4;
CNb - содержание углерода, связанного ниобием, СNb=Nb/7,74;
Сэф.+0,05[Р]≥0,003% (2),
где [Р] - содержание фосфора в стали,
также тем, что смотку полосы в рулоны ведут при температуре не более 650°С, а также тем, что рекристаллизационный отжиг ведут в колпаковой печи при температуре не ниже 700°С с регламентированным нагревом: нагрев полосы до температуры 450÷500°С со скоростью не менее 50°С/час с последующим замедлением нагрева, по крайней мере до 550÷600°С со скоростью не более 30°С/час, далее со скоростью не более 50°С/час до температуры отжига.
Сущность изобретения сводится к следующему. Для обеспечения высокой штампуемости и обеспечения определенной величины ВН-эффекта необходимо содержание в феррите свободного углерода 6÷20 ppm. В случае непрерывного отжига высокие скорости охлаждения препятствуют выделению углерода в виде цементита и обеспечить требуемое содержание углерода в твердом растворе возможно путем обеспечения определенных соотношений между углеродом, титаном и ниобием (с учетом содержания азота и серы). При медленном охлаждении в процессе колпакового отжига значительная часть углерода может выделиться в виде цементита и требуемая величина ВН-эффекта не получится. Поэтому одним из способов обеспечения ВН-эффекта в случае колпакового отжига является обеспечение перед началом охлаждения более высокого содержания углерода, чем в случае непрерывного отжига, - не менее 30 ppm. Другим способом обеспечения требуемой величины ВН-эффекта при достаточно низком содержании углерода в твердом растворе перед началом ускоренного охлаждения - от 6 ppm является легирование стали фосфором, который, снижая скорость диффузии углерода, способствует его сохранению в твердом растворе в количестве, достаточном для проявления ВН-эффекта. Выполнение условия (1) Сэф=[С]-СTi-СNb≥0,0006% обязательно для того, чтобы перед началом охлаждения углерод в количестве, равном Сэф., присутствовал в твердом растворе. При медленном охлаждении часть этого углерода может выделиться в виде цементита. Чтобы этого не произошло, необходимо выполнение условия (2) Сэф.+0,05[Р]≥0,003%, смысл которого сводится к следующему. С увеличением содержания углерода в твердом растворе перед началом охлаждения (Сэф.) снижается минимально необходимое содержание фосфора, обеспечивающее сохранение углерода в твердом растворе. При значении Сэф.≥0,00275% ВН-эффект может быть получен и при минимальном содержании фосфора - 0,005%, хотя при увеличении содержания фосфора величина ВН-эффекта увеличивается. При значении Сэф.<0,00275% для обеспечения ВН-эффекта легирование фосфором обязательно тем в большей степени, чем ниже Сэф. (в соответствии с уравнением (2)). CTi - содержание углерода, связанного титаном: при отношении содержания титана [Ti] к содержанию [N] [Ti]/[N]<3,43 CTi=0, так как весь титан будет израсходован на связывание азота, при [Ti]/[N]≥3,43 углерод может быть связан тем количеством титана, которое останется после связывания азота СTi=([Ti]-3,43N)/4 (на связывание азота будет израсходовано титана в количестве 3,43N). То есть выполнение условия (2) обеспечит повышение комплекса свойств в случае отжига и в непрерывном агрегате, и в колпаковой печи.
Легирование стали медью обеспечивает повышение стойкости против атмосферной коррозии.
Ограничение нижнего предела содержания углерода связано с тем, что при дальнейшем уменьшении содержания углерода снижается склонность к ВН-эффекту. Ограничение минимального содержания азота связано с его участием в выделении нитрида алюминия при колпаковом отжиге, влияющем благоприятно на штампуемость. Нижний предел содержания фосфора, серы, кремния и марганца в стали определяется возможностями существующих на сегодняшний день сталеплавильных технологий. Дальнейшее снижение содержания этих элементов не вызывает существенного улучшения потребительских свойств, но приводит к существенному удорожанию металлопродукции.
Увеличение содержания углерода, азота, серы, кремния и марганца, а также фосфора выше верхних пределов формулы изобретения приводит к ухудшению штампуемости.
Минимальное содержание алюминия в стали определяется необходимостью достаточного раскисления стали и связывания азота в нитрид алюминия. Ограничение верхнего предела содержания алюминия связано с его отрицательным влиянием на штампуемость из-за увеличения количества нитридов алюминия и, следовательно, структурной неоднородности.
Увеличение содержания титана и ниобия выше верхнего предела, помимо отрицательно влияния на штампуемость, снижения величины ВН-эффекта, приводит к удорожанию стали.
Минимальное содержание меди определяется необходимостью обеспечения стойкостью против атмосферной коррозии, ограничение верхнего предела содержания меди связано с ее отрицательным влиянием на штампуемость.
Ограничение температуры смотки - не более 650°С связано с необходимостью сохранения в твердом растворе после горячей прокатки азота, который в дальнейшем, при отжиге, выделяясь в виде мелкодисперсных частиц нитрида алюминия, благоприятно влияет на структуру, текстуру и штампуемость стали.
Увеличение скорости нагрева при рекристаллизационном отжиге до температуры 450÷500°С не менее 50°С/час связано с необходимостью подавить выделение частиц ALN до начала рекристаллизации, а снижение скорости нагрева в интервале температур 450-500°С до 550÷600°С не более 30°С/час - с необходимостью обеспечить более полное выделение частиц ALN на начальных стадиях рекристаллизации. Ограничение скорости последующего нагрева не более 50°С/час, а также минимального значения температуры отжига 700°С связано с необходимостью создания условий для более полного протекания процессов собирательной рекристаллизации, что также требуется для обеспечения высокой штампуембсти.
Примеры конкретного выполнения способа
Шесть плавок низкоуглеродистых сталей было выплавлены в 300-тонном конвертере ОАО "Северсталь" и разлиты на установке непрерывной разливки в слябы сечением 250×1290 мм. Горячую прокатку слябов на полосы толщиной 3,2 мм проводили на стане "2000". Температура конца прокатки составляла 850÷890°С. Полосы после душирования сматывали в рулоны при температуре 560÷700°С. После травления и холодной прокатки на полосы толщиной 0,9 мм полосы подвергали рекристаллизационному отжигу в лабораторных условиях по режиму, имитирующему непрерывный отжиг, или в колпаковой печи при температуре 700-730°С. После дрессировки со степенью обжатия 1,0% проводили комплексные механические испытания проката с определением величины ВН-эффекта.
Вариант 1 - сталь, содержащая 0,005% углерода, 0,009% кремния, 0,20% марганца, 0,035% фосфора, 0,012% серы, 0,25% меди, 0,03% алюминия, 0,004% азота, 0,015% титана, 0,019% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,005-0,00032-0,00245=0,00223%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф.+0,05[Р]=0,00223+0,00175=0,00398%>0,003%, то есть соответствует формуле изобретения. Отжиг проводили по режиму: нагрев до температуры отжига 850°С со скоростью 5°С/с, выдержка 60 с; охлаждение до 400°С со скоростью 10°С/с, выдержка 3 мин, охлаждение на воздухе (вариант соответствует п.1 формулы изобретения).
Вариант 2 - сталь, содержащая 0,009% углерода, 0,020% кремния, 0,15% марганца, 0,040% фосфора, 0,011% серы, 0,25% меди, 0,05% алюминия, 0,005% азота, 0,02% титана, 0,03% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф.=[С]-СTi-СNb=0,009-0,0007-0,0039=0,0044%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф.+0,05[Р]=0,0044+0,002=0,0064%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 560°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/час, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант полностью соответствовал п.п.1-3 формулы изобретения).
Вариант 3 - сталь, содержащая 0,007% углерода, 0,010% кремния, 0,22% марганца, 0,050% фосфора, 0,010% серы, 0,30% меди, 0,03% алюминия, 0,003% азота, 0,01% титана, 0,04% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф.=[С]-CTi-CNb=0,007-0,0052=0,0018%>0,0006%, то есть соответствует формуле изобретения
выражение Сэф.+0,05[Р]=0,0018+0,0025=0,0043%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/час, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант полностью соответствовал п.п.1-3 формулы изобретения).
Вариант 4 - сталь, содержащая 0,008% углерода, 0,013% кремния, 0,18% марганца, 0,040% фосфора, 0,009% серы, 0,05% меди, 0,04% алюминия, 0,045% ниобия, 0,002% азота, железо и неизбежные примеси остальное, при этом выражение Сэф.=[С]-CTi-СNb=0,008-0,0058=0,0022%>0,0006%, то есть соответствует формуле изобретения (СTi=0, так как сталь не содержит титан); выражение Сэф.+0,05[Р]=0,0022+0,002=0,0042%>0,003%, то есть соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/час, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по содержанию меди).
Вариант 5 - сталь, содержащая 0,006% углерода, 0,023% кремния, 0,18% марганца, 0,060% фосфора, 0,007% серы, 0,20% меди, 0,05% алюминия, 0,014% титана, 0,043% ниобия, 0,004% азота, железо и неизбежные примеси остальное, при этом выражение Сэф.=[С]-СTi-СNb=0,006-0,00007-0,00555=0,00038%<0,0006%, то есть не соответствует формуле изобретения; выражение Сэф.+0,05[Р]=0,00038+0,003=0,00338%>0,003%, то есть соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/час, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значению выражения (1)).
Вариант 6 - сталь, содержащая 0,005% углерода, 0,015% кремния, 0,18% марганца, 0,050% фосфора, 0,010% серы, 0,03% меди, 0,04% алюминия, 0,005% азота, 0,012% титана, 0,030% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф.=[С]-СTi-CNb=0,005-0,0039=0,0011%>0,0006%, то есть соответствует формуле изобретения
выражение Сэф.+0,05[Р]=0,0011+0,0025=0,0036%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 680°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 40°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 720°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значениям температуры смотки, скорости нагрева при отжиге до 450°С и по содержанию меди).
Механические испытания образцов холоднокатаного проката из стали указанных плавок проводили на электромеханической испытательной машине INSTRON-1185. Размеры образца составляли 20×120 мм.
Испытания проводили в полуавтоматическом режиме с тензометром продольной деформации (база тензометра 12,5 мм). Скорость растяжения составляла 10 мм/мин.
В случае кривых растяжения без физического предела текучести величину предела текучести определяли по показаниям тензометра с учетом линейного участка диаграммы растяжения (кроме этого, для контроля использовали анализ машинной диаграммы растяжения).
Коэффициент деформационного упрочнения n определяли в диапазоне деформации от 10 до 17%.
Коэффициент нормальной пластической анизотропии r определяли при остановке испытаний (при достижении 17%) путем замера вручную ширины образца (в трех сечениях).
Для образцов шириной 20 мм относительное удлинение δ4 определяли на базе 80 мм (A80).
Испытания для определения упрочнения стали при сушке лакокрасочного покрытия (ВН-эффект) проводили в следующей последовательности:
1) образцы растягивали до величины деформации 2%, которую определяли по экстензометру (база 26 мм); при этом определяли σ2 - напряжение при деформации 2%;
2) образцы помещали в печь, нагретую до температуры 170±10°С, и выдерживали в течение 20 минут;
3) образцы испытывали на растяжение, определяя величину ВН-эффекта, как разницу между пределом текучести σт (ВН) и σ2.
Результаты механических испытаний приведены в таблице. Определяли основные механические характеристики: предел текучести σт, временное сопротивление σb, относительное удлинение δ4, коэффициент нормальной пластической анизотропии r и коэффициент деформационного упрочнения n. Критерием обеспечения требуемой штампуемости считали получение значения относительного удлинения не менее 38%, значения коэффициента нормальной пластической анизотропии r не менее 2,0 и значение коэффициента деформационного упрочнения n не менее 0,20. При этом стремились обеспечить величину ВН-эффекта не мене 40 Н/мм2.
В качестве метода коррозионных испытаний образцов холоднокатаного проката был использован способ переменного погружения образцов автолистовой стали в раствор 3,5% NaCl с прибыванием в нем 10 мин и последующим выносом на воздух (50 мин) в соответствии со стандартом ASTM G 44-75.
Коррозионную стойкость оценивали по приросту массы (привесу) на единицу площади поверхности образца за 30 циклов испытаний. Если значения прироста массы составляло не более 5 г/м2, то коррозионную стойкость считали удовлетворительной.
Для стали по вариантам 1, 2 и 3 получены требуемые показатели штампуемости, величины ВН-эффекта и коррозионной стойкости. Для варианта 5 из-за невыполнения условия (1) еще до начала охлаждения основная часть углерода оказывается связанной в карбид ниобия или титана, что приводит к отсутствию ВН-эффекта. Для варианта 6 высокая температура смотки и низкая скорость охлаждения до температур начала рекристаллизации приводят к выделению азота в виде нитрида алюминия еще до начала рекристаллизации, что отрицательно влияет на штамппуемость (снижается значение r и относительного удлинения). Кроме того, для вариантов 4 и 6 из-за пониженного содержания меди получена недостаточная коррозионная стойкость. Таким образом, только холоднокатаная сталь, полученная по вариантам 1, 2 и 3, соответствующим формуле изобретения, имеет высокие показатели штампуемости, величины ВН-эффекта и коррозионной стойкости.
То есть использование настоящего предложения существенно повышает величину ВН-эффекта стали даже после рекристаллизационного отжига в колпаковой печи, а также коррозионной стойкости стали при сохранении высокой штампуемости.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ | 2006 |
|
RU2313583C2 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ | 2006 |
|
RU2307175C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ | 2006 |
|
RU2313582C2 |
Способ производства горячекатаного травленого проката | 2023 |
|
RU2799195C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ | 2017 |
|
RU2645622C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ | 2006 |
|
RU2330887C1 |
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНОЙ ПОЛОСЫ (ВАРИАНТЫ) | 2011 |
|
RU2478729C2 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛОСЫ (ВАРИАНТЫ) | 2010 |
|
RU2433192C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2008 |
|
RU2361935C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2007 |
|
RU2358025C1 |
Изобретение относится к области металлургии и может быть использовано при изготовлении сталей, применяемых в автомобилестроении. Технический результат изобретения - повышение склонности к ВН-эффекту, в том числе при термической обработке в колпаковых печах при сохранении высокой штампуемости. Технический результат достигается тем, что выплавляют сталь, содержащую следующее соотношение компонентов, мас.%: углерод 0,002-0,015, кремний 0,005-0,050, марганец 0,05-0,50, фосфор 0,005-0,09, сера 0,003-0,020, медь 0,1-0,6, алюминий 0,02-0,07, азот 0,002-0,007, титан не более 0,040, ниобий не более 0,060, железо и неизбежные примеси - остальное, при выполнении следующих условий: Сэф.=[С]-СTi-СNb≥0,0006%, где Сэф. - эффективное содержание углерода, не связанного титаном или ниобием, [С] - общее содержание углерода в стали, СTi - содержание углерода, связанного титаном, при отношении содержания титана [Ti] к содержанию азота [N] [Ti]/[N]<3,43 СTi=0, при [Ti]/[N]≥3,43 CTi=([Ti]-3,43N)/4, CNb - содержание углерода, связанного ниобием, CNb=Nb/7,74; Сэф.+0,05 [Р]>0,003%, где [Р] - содержание фосфора в стали; ведут разливку стали, горячую прокатку, смотку полос в рулоны при температуре не более 650°С, рекристаллизационный отжиг в колпаковой печи при температуре не ниже 700°С с регламентированным нагревом: сначала до температуры 450-500°С со скоростью не менее 50°С/час, а затем до 550-600°С со скоростью не более 30°С/час, далее со скоростью не более 50°С/час до температуры отжига. 2 з.п. ф-лы, 1 табл.
при выполнении условий
Сэф..=[С]-СTi-СNb>0,0006% и Сэф+0,05[Р]≥0,003%,
где Сэф. - эффективное содержание углерода, не связанного титаном или ниобием;
[С] - общее содержание углерода в стали;
СTi - содержание углерода, связанного титаном, причем СTi=0 при [Ti]/[N]<3,43 и CTi={[Ti]-3,43N}/4 при [Ti]/[N]≥3,43,
СNb - содержание углерода, связанного ниобием, СNb=Nb/7,74,
[Р] - содержание фосфора в стали.
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНЫХ ПОЛОС ИЗ СВЕРХНИЗКОУГЛЕРОДИСТОЙ СТАЛИ | 2002 |
|
RU2212457C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ | 2004 |
|
RU2255989C1 |
НИЗКОЛЕГИРОВАННАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ | 2002 |
|
RU2212469C1 |
СТАЛЬ ДЛЯ ЭМАЛИРОВАНИЯ И ИЗДЕЛИЯ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ | 2000 |
|
RU2164544C1 |
СТАЛЬ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ (ВАРИАНТЫ) | 2003 |
|
RU2237101C1 |
Способ приготовления мыла | 1923 |
|
SU2004A1 |
Авторы
Даты
2007-12-27—Публикация
2006-01-24—Подача