СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ МЕТАЛЛОВ Российский патент 2013 года по МПК C23C26/00 

Описание патента на изобретение RU2486285C2

Изобретение относится к технологии финишной обработки поверхности сплавов циркония и может найти применение в атомной промышленности, реакторостроении и металлургии.

Известен способ финишной обработки изделий из сплавов циркония, который заключается в снятии поверхностного слоя в смесях, содержащих плавиковую кислоту [Займовский А.С., Никулина А.В., Решетников Н.Г. Циркониевые сплавы в атомной энергетике. - М.: Энергоиздат, 1981. - 231 с.]. Существенным недостатком такой операции является неизбежное загрязнение поверхности фторидами, что ведет к нежелательным изменениям структуры в кристаллической решетке при облучении, из-за чего такие изделия не выдерживают испытаний в аварийных условиях.

Наиболее близким по технической сущности является способ модификации поверхности металлов, заключающийся в микролегировании поверхностного слоя металлов с помощью магнитно-абразивной обработки порошками, содержащими карбиды переходных металлов IV-VI групп Периодической системы, при скорости магнитно-абразивного резания не менее 500 м/мин, напряженности магнитного поля в рабочем зазоре между полюсами 0,4-0,7 Тл и величине рабочего зазора 2-5 мм [Патент РФ №2200771, МПК C23C 26/00. Способ модификации поверхности металлов. / К.Н.Никитин, В.К.Орлов, ИА.Шлепов (РФ). - №2001114427/02; заявл. 30.05.2001; опубл. 20.03.2003. - С.4]. Этот способ выбран за прототип.

Однако известно [Никитин К.Н., Балицкий В.Н., Н.Е.Некрасова. Влияние магнитно-абразивной обработки поверхности на коррозионные свойства оксидных пленок на сплаве циркония // «Современные аспекты твердотельной электрохимии». Сборник тезисов докладов. - М.: НИФХИ им. Л.Я,Карпова, октябрь-ноябрь, 2009, - с.153], что на сплаве, используемом в реакторостроении, Zr-1%Nb-1,2%Sn-0,35%Fe, обработанном таким способом, не формируется стабильный защитный оксидный слой, так как измерения напряжения пробоя показали, что оно колеблется в широком интервале 26-168 В. Такие защитные пленки не могут обеспечить высокую надежность эксплуатации тепловыделяющий сборок в условиях эксплуатации первого контура ядерного реактора.

Задачей данного изобретения является повышение и стабилизация величины напряжения пробоя, что повысит надежность эксплуатации тепловыделяющих элементов ядерного реактора, изготовленных из сплава Zr-1%Nb-1,2%Sn-0,35%Fe.

Поставленная задача решается тем, что повышение коррозионных характеристик защитного слоя оксидной пленки циркониевого сплава, характеризуемое напряжением пробоя, достигается микролегированием поверхностного слоя атомами металлов и окружающей атмосферы с помощью магнитно-абразивной обработки с размером частиц магнитно-абразивного порошка от 250 до 600 мкм, и скорости относительного перемещения детали и инструмента от 500 до 600 м/мин, и величине рабочего зазора между полюсами 2-10 мм, причем проводят магнитно-абразивную обработку сплава циркония Zr-1%Nb-1,2%Sn-0,35%Fe с использованием в качестве магнитно-абразивного порошка α-ферромагнитной матрицы, в которой содержится 50-55% карбида молибдена, а магнитно-абразивную обработку проводят в две стадии: на первой стадии при напряженности магнитного поля в рабочем зазоре 1-1,5 Тл в течение 1-1,5 мин, и на второй стадии при напряженности магнитного поля 0,2-0,4 Тл в течение 1-0,5 мин.

Изобратание иллюстрируется следующими примерами:

Пример 1. Трубчатые образцы из сплава Zr-1%Nb-1,2%Sn-0,35%Fe обрабатывают на установке для магнитно-абразивной обработки, с помощью магнитно-абразивного порошка, содержащего α-ферромагнитную матрицу Fe+55% Mo2C с фракцией 300-600 мкм без смазочно-охлаждающей жидкости (СОЖ), при величине рабочего зазора 2 мм и линейной скорости вращения магнитных полюсов 500 м/мин. Магнитно-абразивную обработку проводят в две стадии. На первой стадии магнитную индукцию в рабочем зазоре увеличивают до 1,5 Тл и обработку проводят в течение 1 мин. На второй стадии магнитную индукцию в рабочем зазоре уменьшают до 0,4 Тл и обработку проводят в течение 0,5 мин. Поверхность образцов после магнитно-абразивной обработки в таком режиме, в отличие от обычной серебристо-матовой, выглядит слегка загорелой и более матовой.

Образующийся модифицированный слой заметно изменяет электрофизические и коррозионные свойства сплава. При коррозионных испытаниях в воде при 350°C и давлении 200 атм через 2000 час привес составляет 25,0 мг/дм2, сравнимый с привесом 27,0 мг/дм2 для образцов после обычного травления во фтористоводородной ванне и сравнимый с привесом 26,0 мг/дм2 после магнитно-абразивной обработки, проводимой в одну стадию при использовании того же магнитно-абразивного порошка.

Напряжение пробоя слоя оксида после 2000 ч испытаний в автоклаве, характеризующее толщину защитного слоя оксидной пленки, для образцов после двустадийной магнитно-абразивной обработки достигает величины 210 В, что много выше напряжения пробоя 76 В для образцов после обычного травления во фтористоводородной ванне после тех же испытаний и выше чем напряжение пробоя 122 В для образцов после одностадийной магнитно-абразивной обработки после тех же испытаний.

Пример 2. Трубчатые образцы из сплава Zr-1%Nb-1,2%Sn-0,35%Fe обрабатывают на установке для магнитно-абразивной обработки, с помощью магнитно-абразивного порошка, содержащего α-ферромагнитную матрицу Fe+50% Mo2C с фракцией 250-500 мкм без смазочно-охлаждающей жидкости (СОЖ). При величине рабочего зазора 10 мм и линейной скорости вращения магнитных полюсов 600 м/мин. В отличие от обычного одностадийного режима магнитно-абразивную обработку проводят в две стадии. На первой стадии магнитную индукцию в рабочем зазоре увеличивают до 1 Тл и обработку проводят в течение 1,5 мин. На второй стадии магнитную индукцию в рабочем зазоре уменьшают до 0,2 Тл и обработку проводят в течение 1 мин. Поверхность образцов после магнитно-абразивной обработки в таком режиме, в отличие от обычной серебристо-матовой, выглядит слегка загорелой и более матовой.

Напряжение пробоя электрической емкости барьерного слоя оксида после 2000 ч испытаний в автоклаве, характеризующее толщину защитного слоя оксидной пленки, для образцов после двустадийной магнитно-абразивной обработки достигает величины 221 В, что много выше напряжения пробоя 76 В для образцов после обычного травления во фтористоводородной ванне после тех же испытаний и выше чем напряжение пробоя 168 В для образцов после одностадийной магнитно-абразивной обработки после тех же испытаний.

Как видно из приведенных примеров, при обработке поверхности сплава Zr-1%Nb-1,2%Sn-0,35%Fe по предложенному способу напряжение пробоя оксидной пленки поле испытаний в условиях, моделирующих ядерный реактор, составляет 210-221 В, что значительно превосходит соответствующие значения, полученные при использовании известных способов, - травление в HF (53-76 В) и магнитно-абразивной обработки в одну стадию (26-168 В). Таким образом, использование предлагаемого способа позволит увеличить надежность эксплуатации тепловыделяющих сборок АЭС.

Похожие патенты RU2486285C2

название год авторы номер документа
СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ МЕТАЛЛОВ 2001
  • Никитин К.Н.
  • Орлов В.К.
  • Шлепов И.А.
RU2200771C2
Порошок для магнитно-абразивной обработки поверхности трубчатой оболочки твэла из ферритно-мартенситной стали и способ модификации поверхности с его использованием 2022
  • Леонтьева-Смирнова Мария Владимировна
  • Скупов Михаил Владимирович
  • Науменко Ирина Александровна
  • Орлов Владислав Константинович
  • Климов Алексей Александрович
  • Никоноров Константин Юрьевич
RU2797987C1
ТРУБЫ ИЗ СПЛАВОВ НА ОСНОВЕ Z И МЕТОД ИХ ИЗГОТОВЛЕНИЯ 2004
  • Маркелов Владимир Андреевич
  • Шебалдов Павел Васильевич
  • Желтковская Татьяна Николаевна
  • Актуганова Елена Николаевна
  • Белов Владимир Иванович
  • Заводчиков Сергей Юрьевич
  • Ким Янг Сук
  • Им Кьюнг Соо
  • Чеонг Ионг Моо
  • Ким Сунг Соо
RU2298042C2
УСТРОЙСТВО ДЛЯ ПОДАЧИ АГРЕССИВНОЙ И/ИЛИ АБРАЗИВНОЙ СРЕДЫ 2008
  • Беляков Алексей Васильевич
  • Белякова Людмила Алексеевна
RU2395625C2
Катализатор для окислительной конверсии этана в этилен и способ его получения 2016
  • Бондарева Валентина Михайловна
  • Ищенко Евгения Викторовна
  • Шадрина Любовь Алексеевна
  • Соболев Владимир Иванович
  • Пармон Валентин Николаевич
  • Парахин Олег Афанасьевич
  • Чернов Михаил Павлович
RU2656849C1
ЭРОЗИОННОСТОЙКАЯ КЕРМЕТНАЯ ОБЛИЦОВКА ДЛЯ ПРИМЕНЕНИЯ В РАЗВЕДКЕ, ОЧИСТКЕ И ХИМИЧЕСКОЙ ПЕРЕРАБОТКЕ НЕФТИ И ГАЗА 2007
  • Петерсон Джон Роджер
  • Бангару Нарасимха-Рао Венката
  • Антрам Роберт Ли
  • Фаулер Кристофер Джон
  • Тирумалаи Неерадж Сринивас
  • Чун Чангмин
  • Лендвай-Линтнер Эмери Бела
RU2437950C2
ДВУХФАЗНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ И БЕСШОВНАЯ ТРУБА ИЗ ДВУХФАЗНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ 2021
  • Фудзимура Кадзуки
  • Сасаки Сунсукэ
  • Юга Масао
RU2803632C1
СОСТАВ СПЛАВА, НАНОКРИСТАЛЛИЧЕСКИЙ СПЛАВ НА ОСНОВЕ Fe И СПОСОБ ЕГО ФОРМИРОВАНИЯ 2010
  • Урата Акири
  • Ямада Ясунобу
  • Мацумото Хироюки
  • Йосида Сигееси
  • Макино Акихиро
RU2483135C1
СПОСОБ ЗАКАЛКИ ПОД ПРЕССОМ 2020
  • Григорьева, Раиса
  • Дюминика, Флорин
  • Наби, Брахим
  • Дрийе, Паскаль
  • Стюрель, Тьери
RU2803954C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО БЕЗВОДНОГО МОЛИБДАТА ЛИТИЯ 2021
  • Зыкова Марина Павловна
  • Аветисов Игорь Христофорович
RU2778348C1

Реферат патента 2013 года СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ МЕТАЛЛОВ

Изобретение относится к технологии финишной обработки поверхности сплавов циркония и может найти применение в атомной промышленности, реакторостроении и металлургии. Способ включает микролегирование поверхностного слоя сплава с помощью магнитно-абразивной обработки магнитно-абразивным порошком с размером частиц от 250 до 600 мкм, с линейной скоростью вращения магнитных полюсов от 500 до 600 м/мин и при величине рабочего зазора между полюсами 2-10 мм с образованием защитного слоя оксидной пленки. В качестве магнитно-абразивного порошка используют порошок, содержащий α-ферромагнитную матрицу с содержанием в ней 50-55% карбида молибдена. Магнитно-абразивную обработку проводят в две стадии: на первой из которых напряженность магнитного поля в рабочем зазоре 1-1,5 Тл в течение 1-1,5 мин, и на второй стадии - напряженность магнитного поля 0,2-0,4 Тл в течение 1-0,5 мин. Технический результат: повышение и стабилизация величины напряжения пробоя, что повысит надежность эксплуатации тепловыделяющих элементов ядерного реактора. 2 пр.

Формула изобретения RU 2 486 285 C2

Способ модификации поверхности циркониевого сплава, включающий микролегирование поверхностного слоя сплава с помощью магнитно-абразивной обработки магнитно-абразивным порошком с размером частиц от 250 до 600 мкм, с линейной скоростью вращения магнитных полюсов от 500 до 600 м/мин и величиной рабочего зазора между полюсами 2-10 мм с образованием защитного слоя оксидной пленки, отличающийся тем, что в качестве магнитно-абразивного порошка используют порошок, содержащий α-ферромагнитную матрицу с содержанием в ней 50-55% карбида молибдена, при этом магнитно-абразивную обработку проводят в две стадии, на первой из которых напряженность магнитного поля в рабочем зазоре 1-1,5 Тл в течение 1-1,5 мин, и на второй стадии - напряженность магнитного поля 0,2-0,4 Тл в течение 1-0,5 мин.

Документы, цитированные в отчете о поиске Патент 2013 года RU2486285C2

СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ МЕТАЛЛОВ 2001
  • Никитин К.Н.
  • Орлов В.К.
  • Шлепов И.А.
RU2200771C2
СПОСОБ ОБРАБОТКИ ЦИРКОНИЕВЫХ СПЛАВОВ 2005
  • Синельников Леонид Прокопьевич
  • Тимохин Александр Николаевич
  • Перехожев Владимир Иванович
  • Белых Татьяна Аркадьевна
  • Гаврилов Николай Васильевич
  • Трифанов Андрей Георгиевич
  • Молчанов Владимир Лаврентьевич
  • Емлин Даниил Рафаилович
  • Новиков Владимир Владимирович
  • Купалов-Ярополк Анатолий Игоревич
RU2298049C2
UA 20100310 U, 10.03.2010
СПОСОБ ПОВЕРХНОСТНОЙ ОБРАБОТКИ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ В ЦИРКОНИЕВОЙ ОБОЛОЧКЕ 1998
  • Батуев В.И.
  • Чапаев И.Г.
  • Бычихин Н.А.
  • Рожков В.В.
  • Иляскин В.А.
  • Филиппов Е.А.
  • Лузин А.М.
RU2153202C2
УЛУЧШИТЕЛЬ ПОЧВЫ ДЛЯ СНИЖЕНИЯ НАТРИЕВОСТИ И РАСПЫЛЕНИЯ ДЛЯ УЛУЧШЕНИЯ ПОДВИЖНОСТИ ВОДЫ В РАЗЛИЧНЫХ ПОЧВАХ 2018
  • Сандип, Бхатт
  • Саад, Джон
  • Брюкманн, Ральф
  • Вилль, Петер
RU2735231C1

RU 2 486 285 C2

Авторы

Некрасова Наталия Евгеньевна

Шлепов Игорь Алексеевич

Климов Алексей Александрович

Кругликов Сергей Сергеевич

Даты

2013-06-27Публикация

2011-07-14Подача