ТРУБЫ ИЗ СПЛАВОВ НА ОСНОВЕ Z И МЕТОД ИХ ИЗГОТОВЛЕНИЯ Российский патент 2007 года по МПК C21D1/18 C22F1/18 C22C16/00 

Описание патента на изобретение RU2298042C2

Область техники, к которой относится изобретение

Настоящее изобретение относится к трубам из сплавов на основе Zr, используемым в качестве элементов конструкции активной зоны ядерных реакторов, в частности реакторов с тяжелой водой под давлением типа CANDU (CANada Deuterium Uranium) и способу их изготовления.

Уровень техники

Трубы давления подвержены воздействию высокого флюенса нейтронов и воды высоких температур в реакторах CANDU, поскольку сборки твэлов находятся внутри них. Проблема состоит в том, что трубы давления деградируют быстрее, чем ожидалось, что приводит к их замене ранее проектного ресурса. Для решения этой проблемы и дальнейшего увеличения их проектного ресурса более чем 30 лет необходимо усовершенствование труб давления, чтобы они удовлетворяли плановым целевым величинам, приведенным в [С.Е.Coleman, B.F.Cheadle et al, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, E.R.Bradley and G.P.Sabol, Eds., American Society for Testing and Materials, 1997, 884-898.]. Если исходить из критерия "течь перед разрушением" (LBB), то скорость замедленного гидридного растрескивания (ЗГР) и вязкость разрушения - два основных фактора, определяющих запас безопасности для требования LBB. Однако существующие Zr-2,5Nb трубы CANDU имеют некоторые недостатки, такие как высокая скорость ЗГР, низкая вязкость разрушения и неравномерное распределение механической прочности. Поскольку трубы давления CANDU испытывают сильную деформацию при выдавливании при 817°C, соответствующую области (α+β) фазы [В.А.Cheadle, С.Е.Coleman and H.Light, Nuclear Technology, Vol.57, 1982, 413-425], они имеют тангенциальную текстуру с большой долей базисных полюсов, лежащих в окружном направлении, и сильно удлиненные α-Zr зерна с β-Zr-фазой между ними. Эти характеристики микроструктуры являются причиной недостатков, существующих Zr-2,5Nb труб давления CANDU. Поэтому проведенные до сих пор исследования были сфокусированы на снижение скорости ЗГР и увеличение вязкости разрушения. Увеличение вязкости разрушения труб CANDU было достигнуто путем уменьшения газовых примесей за счет введения четырехкратной плавки слитка [С.Е.Coleman, B.F.Cheadle et al, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, E.R.Bradley and G.P.Sabol, Eds., American Society for Testing and Materials, 1997, 884-898]. Однако до сих пор не было достигнуто улучшения стойкости к ЗГР. Много внимания было уделено модификации процесса изготовления Zr-2,5Nb труб давления CANDU для исследования влияния на восприимчивость к радиационному росту и ЗГР [R.G.Fleck, E.G.Price and B.A.Cheadle, Zirconium in the Nuclear Industry: Sixty International Symposium, ASTM STP 824, D.G.Franklin and R.B.Adamson, Eds., American Society for Testing and Materials, 1984, 88-105]. Модифицированные процессы изготовления включают более низкую, на 38°C, температуру горячего выдавливания, снижающего удлинение на 29%, с последующим холодным волочением либо за одну ступень на 40% и отжигом при 475-500°C в течение 6 ч (способы 1 и 3), либо за 2 ступени по 20% с промежуточным отжигом при 650°C в течение 0,5 ч (способ 2). Хотя один из модифицированных процессов обнаруживает значительно меньший рост под действием нейтронного облучения, модифицированные трубы не обладают лучшими сопротивлением ЗГР и вязкостью разрушения по сравнению с существующей Zr-2,5Nb трубой CANDU. Сопротивление ЗГР Zr-2,5 Nb труб можно улучшить за счет контролирования текстуры, поэтому Ким и др. подали патент, притязающий на метод производства труб давления, стойких к ЗГР, с радиальной текстурой, в которой большая доля базисных полюсов лежит в радиальном направлении [S.S.Kirn, D.W.Kirn, J.W.Hong, Y.W.Kang, USA Patent, No. 5681406, C 22 C 16/00, Oct. 1997]. Метод, заявленный в данном патенте, включает поперечную прокатку труб в конечном процессе, приводящую к образованию радиальной текстуры, а также увеличению сопротивления ЗГР. Однако в данном патенте специально не упоминается коррозионная стойкость, вязкость разрушения, ползучесть и прочность. Это объясняется тем, что радиальная текстура благоприятна стойкости к ЗГР, но будет способствовать усиленной ползучести [С.Е.Coleman, B.F.Cheadle et al, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, E.R.Bradley and G..P.Sabol, Eds., American Society for Testing and Materials, 1997, 884-898].

Таким образом, необходимо оптимизировать не только текстуру, но и микроструктуру, чтобы изготовить улучшенные трубы с более высокой стойкостью к ЗГР и всеми другими свойствами не хуже, чем у существующей Zr-2,5Nb трубы CANDU. Попытка изготовить трубы давления с оптимизированными микроструктурой и текстурой была предпринята при изготовлении Zr-2,5Nb трубы давления с обработкой ТМО (термомеханическая обработка) для реакторов РБМК (Реактор Большой Мощности Канальный) [A.V.Nikulina, N.G.Reshetnikov et al, Voprosy Atomnoy Nauki i Tekniki, Series: Materials Science and Novel Materials, 1990, issue 2(36), 46-54]. Она включает выдавливание при 700-750°C с коэффициентом выдавливания менее 11, 1-ую холодную прокатку, 1-ый промежуточный отжиг при 580°C в течение 3 ч, 2-ую холодную прокатку, 2-ой промежуточный отжиг при 850-870°C и закалку в воду (ТМО-1) или в смесь аргона с гелием (ТМО-2), 3-ю холодную прокатку и окончательный отжиг при 515°C (ТМО-1) или 530-540°C (ТМО-2) в течение 24 ч. Zr-2,5Nb труба ТМО-2, изготовленная по указанному процессу, имеет радиальную текстуру, хорошую стойкость к ЗГР и сравнительно высокое сопротивление ползучести, но очень низкую прочность и меньшую коррозионную стойкость.

Недавно в Канаде в качестве альтернативного материала для труб давления разработаны многокомпонентные сплавы на основе Zr. Труба EXCEL, изготовленная из так называемого сплава EXCEL, содержащего 2,5-4,0 вес.% Sn, 0,5-1,5 вес.% Мо, 0,5-1,5 вес.% Nb, остальное - Zr, была заявлена как имеющая малый рост 1-5% и максимальное увеличение диаметра - 2,5% в течение срока эксплуатации 30 лет в реакторах CANDU [В.А.Cheadle et al, USA Patent 4065328, 1977; C22F 1/18, USA Patent No. 4452648, 1984]. Однако эта EXCEL труба имеет более низкую пластичность, соответствующую удлинению в несколько процентов, очень низкую вязкость разрушения (dJ/da) и высокую скорость ЗГР, что в конечном счете дает малый запас безопасности до критерия LBB.

Еще один многокомпонентный сплав, содержащий 1 вес.% Sn, 1 вес.% Nb и 0.5 вес.% Fe, был разработан в России в качестве конструкционного материала ядерных реакторов [A.V.Nikulina, V.A.Markelov et al, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, E.R.Bradley and G..P.Sabol, Eds., American Society for Testing and Materials, 1996, 785-804].

Наиболее близким аналогом заявленного способа является способ получения труб из сплава на основе циркония, включающий изготовление слитка, предварительную бета-обработку слитка, получение заготовки путем горячего формования заготовки с промежуточными отжигами при температуре существования альфа-циркония и доводку заготовки до получения готовой трубы [US 5560790, МПК C 22 F 1/18 (2006.01), опубл. 01.10.1996].

Техническим результатом изобретения является увеличение стойкости к ЗГР, высокая вязкость разрушения, однородные коррозионные и механические свойства по длине - коррозионная стойкость, прочность и скорость ползучести.

Наиболее близким аналогом предложенного изобретения - труба из сплава на основе циркония, изготовленная по способу п.1, является труба из сплава на основе циркония, содержащего 0,5-1,5 мас.% Nb, 0,9-1,5 мас.% Sn, 0,3-0,6 мас.% Fe, 0,005-0,2 мас.% Cr, 0,005-0,04 мас.% С, 0,05-0,15 мас.% О, 0,005-0,15 мас.% Si и остальное Zr [US 5560790, МПК C 22 F 1/18 (2006.01), опубл. 01.10.1996]. Оболочечная труба, изготовленная из этого многокомпонентного сплава, имела улучшенную коррозионную стойкость, повышенные прочность на растяжение и сопротивление ползучести и росту, особенно в реакторных условиях. Этот факт заставляет предположить, что этот сплав должен быть перспективным материалом труб давления, но для этого необходимо найти оптимальный процесс изготовления для получения улучшенных труб давления с лучшей стойкостью к ЗГР и всеми остальными свойствами, сравнимыми со свойствами существующих труб давления, эксплуатирующихся в реакторах CANDU.

Техническим результатом изобретения является увеличение стойкости к ЗГР, высокая вязкость разрушения, однородные коррозионные и механические свойства по длине - коррозионная стойкость, прочность и скорость ползучести.

Раскрытие изобретения.

Для достижения технического результата способ изготовления бесшовных труб из сплавов на основе циркония включает гомогенезирующую обработку выдавленных трубных гильз в области (α+β)-фазы, закалку в воду, отжиг со снятием напряжений в области α-фазы, 1-ую холодную прокатку, промежуточный отжиг, 2-ую холодную прокатку и окончательный отжиг, причем гомогенезирующую обработку в области (α+β)-фазы осуществляют при температуре на 20-60°C ниже температуры превращения (α+β)/β, при этом общая деформация Dt после 1-ой и 2-ой холодной прокатки более 70% и Q-фактор на 2-ой холодной прокатке не менее 5, а отношение Q-фактора между 2-ой и 1-ой холодной прокаткой больше 2, промежуточный отжиг между двумя холодными прокатками проводят в области α-фазы или в области (α+β)-фазы и окончательный отжиг проводят в области α-фазы при температуре на 120-270°C ниже температуры α/(α+β) превращения, при этом:

где Ab - исходная площадь поперечного сечения трубы до холодной прокатки и Af - окончательная площадь поперечного сечения после холодной прокатки

где Δt=tf-tb, Δd=df-db, tb и db - толщина и средний диаметр трубы до холодной прокатки, tf и df - толщина и средний диаметр трубы после холодной прокатки.

В частном варианте выдавленные трубные заготовки изготавливают из сплава на основе циркония, содержащего 2,5-2,8 вес.% Nb, 0,1-0,13 вес.% О, 0,05-0,13 вес.% Fe, примеси - <0,0005 вес.% водорода, <0,0065 вес.% азота, <0,0001 вес.% хлора, <0,0125 вес.% углерода, <0,0010 вес.% фосфора и остальное Zr.

В другом частном варианте промежуточный отжиг после 1-ой холодной прокатки осуществляют при температуре на 30-130°C выше температуры превращения α/(α+β), а окончательный отжиг осуществляют при температуре на 120-220°C ниже температуры превращения α/(α+β).

В другом частном варианте сплав на основе циркония имеет средний объем β-Zr-фазы не менее 10 об.% и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, более 0,75.

В другом частном варианте сплав на основе циркония имеет средний объем β-Zr-фазы 10-20 об.% и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, 0,75-0,90.

В другом частном варианте выдавленные трубные гильзы изготавливают из сплава на основе циркония, содержащего 0,9-1,2 вес.% Nb, 1,1-1,42 вес.% Sn, 0,3-0,47 вес.% Fe, 0,05-0,12 вес.% О, примеси - <0,0005 вес.% водорода, <0,0065 вес.% азота, <0,0001 вес.% хлора, <0,0125 вес.% углерода, <0,0010 вес.% фосфора и остальное Zr.

В другом частном варианте выдавленные трубные гильзы получают из слитков, подверженных β-закалке со скоростью охлаждения выше 50°С/с.

В другом частном варианте промежуточный отжиг после 1-ой холодной прокатки проводят при температуре на 70-130°С ниже температуры α/(α+β) превращения и окончательный отжиг при температуре на 120-270°С ниже температуры α/(α+β) превращения.

В другом частном варианте частицы второй фазы Zr(Nb, Fe)2 составляют не более 1 об.% и имеют средний диаметр не более 0,05 мкм и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft более 0,9.

В другом частном варианте частицы второй фазы Zr(Nb, Fe)2 имеют средний диаметр не более 0,05 мкм и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, 0,9-1,3.

Для достижения технического результата труба из сплава на основе циркония изготовлена по способу п.1 и сплав содержит 2,5-2,8 вес.% Nb, 0,1-0,13 вес.% О, 0,05-0,13 вес.% Fe, примесей - <0,0005 вес.% водорода, <0,0065 вес.% азота, <0,0001 вес.% хлора, <0,0125 вес.% углерода, <0,0010 вес.% фосфора и остальное Zr и имеет средний объем β-Zr-фазы не менее 10 об.%, и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, более 0,75.

В частном варианте сплав на основе циркония имеет средний объем β-Zr-фазы 10-20 об.% и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, от 0,75 до 0,9.

В другом частном варианте скорость замедленного гидридного растрескивания менее 6×10-8м/с при 250°С, пороговый коэффициент интенсивности напряжений не менее 10 МПа√м при 250°С и сопротивление вязкому разрушению, dJ/da, более 300 МПа при 250°С и прочность на растяжение более 480 МПа при 300°С.

В другом частном варианте труба изготовлена по способу п.1 и сплав содержит 0,9-1,2 вес.% Nb, 1,1-1,42 вес.% Sn, 0,3-0,47 вес.%Fe, 0,05-0,12 вес.% О, и примеси - <0,0005 вес.% водорода, <0,0065 вес.% азота, <0,0001 вес.% хлора, <0,0125 вес.% углерода, <0,0010 вес.% фосфора и остальное Zr, имеет частицы второй фазы Zr(Nb, Fe)2 не более 1 об.% со средним диаметром не более 0,05 мкм и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, более 0,9.

В другом частном варианте частицы второй фазы Zr(Nb, Fe)2 имеют средний диаметр не более 0,05 мкм и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, от 0,9 до 1,3.

В другом частном варианте скорость замедленного гидридного растрескивания менее 6×10-8м/с при 250°С, пороговый коэффициент интенсивности напряжений не менее 10 МПа√м при 250°C, сопротивление вязкому разрушению, dJ/da, более 250 МПа при 250°C и прочность на растяжение более 480 МПа при 300°C.

В таблице приведены микроструктурные характеристики и свойства изобретенных труб в сравнении с используемыми в настоящее время трубами из сплава Zr-2,5Nb.

Специфическая характеристика процессов изготовления указанных труб, выполняющих указанные выше цели, заключается в следующих фактах: выдавленная трубная гильза подвергается гомогенизирующей обработке в области (α+β)-фазы при температуре на 20-60°C ниже температуры превращения (α+β)/β и закалке в воду с последующим снятием напряжений в области α-фазы и двум ступеням холодной прокатки с общей деформацией Dt более 70%, Q-фактором на второй холодной прокатке не менее 5, причем отношение Q-фактора между 2-ой и 1-ой холодной прокаткой больше 2, где Dt=(Ab-Af)/Аb, Аb - исходная площадь поперечного сечения трубной гильзы до холодной прокаткой, Af - конечная площадь поперечного сечения трубной гильзы после холодной прокатки; Q-фактор определяется как Δt/tb/Δd/db, Δt=tf-tb, Δd=df-db, tb и tf - толщина до и после холодной прокатки, db и df - средний диаметр до и после холодной прокатки и подвергается промежуточному отжигу между двумя холодными прокатками в области α-фазы или (α+β)-фазы в зависимости от заявленных Zr-сплавов и конечному отжигу в области α-фазы в температурном диапазоне на 120-270°C ниже температуры превращения (α(α+β).

Гомогенизирующая обработка в области (α+β)-фазы и закалка в воду улучшают однородность микроструктуры по всей длине и позволяют проводить первую холодную прокатку без образования трещин после снятия напряжений в области α-фазы. Сочетание большой степени деформации (>70%) за два прохода холодной прокатки с Q-фактором на второй холодной прокатке не менее 5 и гомогенизирующей обработки в области (α+β)-фазы и закалки в воду способствует достижению изобретенным трубам радиальной текстуры, удовлетворяющей контрольную величину отношения fr/ft, и равномерной прочности по всей длине.

Одна изобретенная труба из Zr-2,5 вес.% Nb сплава подвергается промежуточному отжигу между двумя холодными прокатками в диапазоне температур на 30-130°C выше температуры превращения α/(α+β)-фазы с целью сохранения достаточно высокого сопротивления ползучести, по крайней мере, сравнимого или лучше такового с существующей Zr-2,5Nb трубой CANDU [В.А.Cheadle, C.E.Coleman and H.Light, Nuclear Technology, Vol.57, 1982, 413-425]. Другая изобретенная труба из сплава Zr - 1 вес.% Nb - 1,2 вес.% Sn - 0,35 вес.% Fe подвергается промежуточному отжигу в диапазоне температур на 70-130°C ниже температуры превращения α/(α+β)-фазы с целью подавления роста Zr(Nb, Fe)2 частиц второй фазы, средний диаметр которых меньше 0,05 мкм для улучшения коррозионной стойкости и вязкости разрушения.

Осуществление изобретения

Процесс изготовления изобретенных труб осуществляется следующим образом: слиток сплава Zr - 2,5 вес.% Nb или Zr - 1 вес.% Nb - 1,2 вес.% Sn - 0,35 вес.% Fe получают вакуумно-дуговой плавкой, подвергают винтовой прокатке при 960°C для уменьшения диаметра на 25%, разрезают на отрезки определенной длины, сверлят для получения внутреннего отверстия, термообрабатывают при 1010°C и закаливают в воду, подвергают механической обработке для удаления всей поверхности, загрязненной газами, выдавливают в диапазоне температур 680-750°C для получения трубной гильзы с наружным диаметром 153 мм и толщиной стенки 18,5 мм. Затем эту трубную гильзу гомогенизируют в области (α+β)-фазы, температурные диапазоны которой на 20-60°C ниже температуры превращения (α+β)/β-фазы. Эта гомогенизирующая обработка в области (α+β)-фазы и закалка имеют целью получить однородную микроструктуру с более разупорядоченной текстурой и оптимальным сочетанием размеров зерен и объемным отношением между первичной α-Zr и превращенной α'-Zr фазами, что способствует процессу холодной обработки проходить без образования трещин. Таким образом, оптимизированная температура гомогенизации имеет очень важное значение: более высокая температура гомогенизации приводит к более крупным β-Zr-зернам, снижая степень обрабатываемости на стадии холодной прокатки, что, таким образом, ведет к растрескиванию трубы, а более низкая температура гомогенизации дает менее однородную микроструктуру, что в большей степени характерно для трубы из сплава Zr - 1 вес.% Nb - 1,2 вес.% Sn - 0,35 вес.% Fe.

Затем трубная гильза подвергается термообработке со снятием напряжения в области α-фазы и холодной прокатке за 2 стадии на пильгерных прокатных станах. Термообработка для снятия напряжений в области α-фазы должна снять остаточные напряжения от закалки в воду, приводя к отсутствию образования трещин при холодной прокатке. Общая деформация Dt, за 2-е ступени холодной прокатки должна превысить 70% и Q-фактор на 2ой холодной прокатке не меньше 5; причем отношение Q-фактора на 2ой холодной прокатке к таковому на 1ой холодной прокатке больше 2, где Dt=(Аb-Af)/Ab, Аb и Af - площадь поперечного сечения трубы до и после холодной прокатки, а Q определяется как Δt/tbΔd/db, Δt=tf-tb, Δd=df-db, tb и tf - толщина до и после холодной прокатки, db и df - средние диаметры до и после холодной прокатки. Более низкие общая деформация Dt и отношение Q-факторов на 2-ой и 1-ой холодных прокатках, чем 70% и 2 соответственно, приводят к более низкой вязкости разрушения и более высокой скорости ЗГР труб давления.

Промежуточный отжиг между холодными прокатками проводится для трубы из сплава Zr - 2,5 вес.% Nb в области (α+β)-фазы, температура которой на 30-130°C выше температуры α/(α+β) превращения. Этот (α+β)-отжиг приводит к образованию 2-фазной структуры с объемной долей β-Zr фазы, соответствующей 10-20 об.%, таким образом, увеличивается сопротивление ползучести. Более высокая температура промежуточного отжига приводит к более крупным зернам и большей объемной доле β-фазы, что понижает прочность на растяжение и коррозионную стойкость. В противоположность этому более низкая температура промежуточного отжига также приводит к уменьшению сопротивления ползучести и снижению вязкости разрушения. Для трубы из сплава Zr - 1 вес.% Nb - 1,2 вес.% Sn - 0,35 вес.% Fe промежуточный отжиг проводится в α-фазе, температура которой на 70-130°C ниже температуры превращения α/(α+β)-фазы. Этот отжиг в α-фазе способствует образованию мелких Zr(Nb, Fe)2 частиц второй фазы средним диаметром не более 0,05 мкм, что ведет к более высокой коррозионной стойкости и вязкости разрушения, а также увеличению сопротивления ползучести и более низкому радиационному росту. Отжиг при более высокой температуре ведет к усиленному росту частиц Zr(Nb, Fe)2, а также уменьшению прочности на растяжение ниже 480 МПа, что соответствует требованию минимальной прочности на растяжение при 300°C. В противоположность этому отжиг при более низкой температуре может вызвать некоторое растрескивание во время 2-ой холодной прокатки. Окончательный отжиг обеих изобретенных труб осуществляется в области α-фазы, температура которой на 120-270°C ниже температуры фазового превращения α/(α+β). Более высокая температура окончательного отжига уменьшает их прочность на растяжение при 300°C до менее чем 480 МПа, а более низкая температура конечного отжига увеличивает скорость ЗГР при 250°C и приводит к усилению ползучести и более высокой коррозии.

Специфические примеры осуществленного изобретения приведены ниже, и их свойства сравниваются со свойствами используемых в настоящее время Zr-2,5Nb труб.

Пример 1.

Слиток из сплава Zr - 2,5 вес.% Nb 450 мм в диаметре изготовлен с помощью вакуумно-дуговой плавки, подвергнут 2-м винтовым прокаткам при 960°C для получения заготовки 305 мм в диаметре, разрезан на мерные длины и высверлен для получения полой трубы. Затем эта трубная гильза была нагрета до 1010°C с выдержкой в течение 50 мин, закалена в воду, механически обработана до наружного диаметра 298 мм и внутреннего диаметра 118 мм для удаления поверхностных слоев, загрязненных газом, выдавлена с коэффициентом выдавливания 7,5 при температурах в диапазоне от 680 до 750°C в полую трубу наружным диаметром 153 мм с толщиной стенки 18,5 мм. Эта полая труба была нагрета до 850°C в течение 1 ч и закалена в воду, механически обработана до наружного диаметра 150 мм и толщины 15 мм, отожжена в вакууме при 560°C в течение 5 ч, прокатана в холодном состоянии до наружного диаметра 119,6 мм и толщины стенки 6,7 мм с Q-фактором 3,4, подвергнута промежуточному отжигу при 720°C в течение 1 ч и, наконец, прокатана в холодном состоянии с Q-фактором 7,7 до наружного диаметра 112,6 мм и толщины стенки 4,5 мм с последующим конечным отжигом при 400°C в течение 24 ч. Суммарная деформация при холодной прокатке составила 76%.

Пример 2.

Процесс изготовления, как описан в примере 1, за исключением того, что слиток был изготовлен из сплава Zr - 1 вес.% Nb - 1,2 вес.% Sn - 0,35 вес.% Fe и промежуточный отжиг после 1-ой холодной прокатки был выполнен при 570°C в течение 3 ч.

Пример 3.

Процесс изготовления, как описан в примере 1, за исключением того, что промежуточный отжиг после 1-ой холодной прокатки был выполнен при 650°C в течение 1 ч.

Пример 4.

Тот же процесс изготовления и тот же сплав, как описано в примере 2, за исключением того, что полая труба после выдавливания была нагрета до 880°C и закалена в воду, и промежуточный отжиг после 1-ой холодной прокатки проводили при 520°C, а окончательный отжиг - при 500°C в течение 6 ч.

Пример 5.

Тот же процесс изготовления и тот же сплав, как описано в примере 2, за исключением того, что выдавливание для получения полой трубы наружным диаметром 143 мм и толщиной 13 мм осуществлялось с коэффициентом 11,1, закаленная полая труба механически обрабатывалась на наружный диаметр 140 мм с толщиной 9,5 мм и промежуточный отжиг после 1-ой холодной прокатки, проведенной с Q-фактором 2,2, был выполнен при 600°C в течение 3 ч. Суммарная деформация за две холодные прокатки составила 61%.

Пример 6.

Тот же процесс изготовления и тот же сплав, как в примере 3, за исключением того, что первая и вторая холодные прокатки осуществлялись с Q-факторами 3,8 и 5,3 соответственно, приводящими к отношению Q-факторов между 2-ой и 1-ой холодными прокатками меньше 2.

Осуществленные примеры изобретения были подвергнуты характеристическим испытаниям, включая испытания на растяжение, анализы микроструктуры и текстуры, испытания на вязкость разрушения, ЗГР, ползучесть и коррозию, характеристики которых представлены в таблице в сравнении с характеристиками, используемых в настоящее время стандартных труб давления CANDU и трубы РБМК. Процессы изготовления этих труб CANDU и РБМК были уже сообщены в работах [В.А.Cheadle, С.Е.Coleman and H.Light, Nuclear Technology, Vol.57, 1982, 413-425; A.V.Nikulina, N.G.Reshetnikov et al, Voprosy Atomnoy Nauki i Tekniki, Series: Materials Science and Novel Materials, 1990, issue 2(36), 46-54; J.R.Theaker, R.Choubey, G.D.Moan, S.A.Aldridge, L.Davies, R.A.Graham and C.E.Coleman, Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, A.M.Garde and E.R.Bradley, Eds., American Society for Testing and Materials, 1994,221-245].

Как ясно продемонстрировано в таблице, с помощью изобретенных процессов изготовления успешно производится труба из Zr - 2,5 вес.% Nb сплава, имеющая β-Zr-фазу не менее чем 10 об.% и текстуру с отношением fr/ft не менее 0,75. Далее с помощью указанных процессов изготовления получают Zr - 1 вес.% Nb - 1,2 вес.% Sn - 0,35 вес.% Fe трубу, имеющую Zr(Nb, Fe)2 частиц второй фазы в количестве не более 1 об.%, средним диаметром не более 0,05 мкм и текстуру с отношением fr/ft более 0,9. Сочетание микроструктурных характеристик с текстурными параметрами сообщает трубам из сплавов Zr - 2,5 вес.% Nb и Zr - 1 вес.% Nb - 1,2 вес.% Sn - 0,35 вес.% Fe улучшенную стойкость к ЗГР, несколько более высокую вязкость разрушения и более равномерное распределение механической прочности по длине трубы в пределах 10%, при этом все другие свойства сравнимы со свойствами существующей Zr-2,5Nb трубы CANDU, как отчетливо продемонстрировано в таблице. Особенно изобретенные трубы имеют сравнимые скорость ползучести и коррозию в воде и паре по сравнению со стандартной Zr-2,5Nb трубой давления CANDU.

Проведение холодной прокатки с суммарной деформацией менее 70% и промежуточного отжига на 50°C (вместо 70-130°C) ниже температуры превращения α/(α+β)-фазы, как указано в примере 5, приводит к тому, что в трубе из сплава Zr - 1 вес.% Nb - 1,2 вес.% Sn - 0,35 вес.% Fe наряду с мелкими выделениями Zr(Nb, Fe)2, образуются крупные выделения типа (Zr, Nb)2Fe размером до 1 мкм в диаметре, которые способствуют снижению вязкости разрушения материала dJ/da до 210 МПа, в результате чего не удается достичь целевой величины 250 МПа. Одновременно с этим более высокая температура промежуточного отжига приводит к снижению прочности материала трубы ниже требуемого уровня 480 МПа (пример 5).

Похожие патенты RU2298042C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПЛОСКОЙ ЗАГОТОВКИ ИЗ ЦИРКОНИЕВОГО СПЛАВА, ПОЛУЧЕННАЯ ЭТИМ СПОСОБОМ ПЛОСКАЯ ЗАГОТОВКА И РЕШЕТКА РЕАКТОРА АЭС, ВЫПОЛНЕННАЯ ИЗ ЭТОЙ ЗАГОТОВКИ 2004
  • Барбери Пьер
  • Симоно Клод
RU2351687C2
СПЛАВ НА ОСНОВЕ ЦИРКОНИЯ 1999
  • Никулина А.В.
  • Шебалдов П.В.
  • Шишов В.Н.
  • Перегуд М.М.
  • Агеенкова Л.Е.
  • Рождественский В.В.
  • Маркелов В.А.
  • Солонин М.И.
  • Бибилашвили Ю.К.
  • Лавренюк П.И.
  • Лосицкий А.Ф.
  • Ганза Н.А.
  • Кузьменко Н.В.
  • Котрехов В.А.
RU2141540C1
СПОСОБ ПОЛУЧЕНИЯ ПЛОСКОЙ ЗАГОТОВКИ ИЗ ЦИРКОНИЕВОГО СПЛАВА, ПОЛУЧЕННАЯ ЭТИМ СПОСОБОМ ПЛОСКАЯ ЗАГОТОВКА И ЭЛЕМЕНТ ТЕПЛОВЫДЕЛЯЮЩЕЙ СБОРКИ ЯДЕРНОГО РЕАКТОРА АЭС, ИЗГОТОВЛЕННЫЙ ИЗ ПЛОСКОЙ ЗАГОТОВКИ 2004
  • Барбери Пьер
  • Симоно Клод
RU2350684C2
СПЛАВ НА ОСНОВЕ ЦИРКОНИЯ 1999
  • Никулина А.В.
  • Шебалдов П.В.
  • Шишов В.Н.
  • Перегуд М.М.
  • Агеенкова Л.Е.
  • Рождественский В.В.
  • Солонин М.И.
  • Бибилашвили Ю.К.
  • Лавренюк П.И.
  • Лосицкий А.Ф.
  • Ганза Н.А.
  • Кузьменко Н.В.
  • Котрехов В.А.
  • Шевнин Ю.П.
  • Маркелов В.А.
RU2141539C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЦИРКОНИЕВЫХ СПЛАВОВ 1989
  • Зеленский В.Ф.
  • Стукалов А.И.
  • Неклюдов И.М.
  • Гайдамаченко Г.Г.
  • Грицина В.М.
  • Роенко Н.М.
  • Савченко В.И.
  • Ожигов Л.С.
  • Воеводин В.Н.
  • Платонов Л.В.
SU1767924A1
Способ изготовления тонколистового проката из сплава Ti - 10, 0-15, 0 Al - 17, 0-25, 0 Nb - 2, 0-4, 0 V - 1, 0-3, 0 Mo - 0, 1-1, 0 Fe - 1, 0-2, 0 Zr - 0,3-0,6 Si 2015
  • Ледер Михаил Оттович
  • Козлов Александр Николаевич
  • Водолазский Валерий Фёдорович
  • Водолазский Фёдор Валерьевич
  • Калиенко Максим Сергеевич
  • Михайлов Виталий Анатольевич
RU2615761C1
ТРУБА ИЗ СПЛАВА НА ОСНОВЕ ЦИРКОРИЯ ДЛЯ СБОРКИ ТОПЛИВНЫХ ЭЛЕМЕНТОВ ЯДЕРНОГО РЕАКТОРА 1996
  • Жан-Поль Мардон
  • Жан Сенева
  • Даниель Шарке
RU2126559C1
Способ изготовления холоднокатаных трубных изделий из сплавов циркония с высокой коррозионной стойкостью (варианты) 2023
  • Филатова Надежда Константиновна
  • Нестерова Нина Васильевна
  • Заводчиков Александр Сергеевич
  • Ожмегов Кирилл Владимирович
  • Маркелов Владимир Андреевич
  • Сабуров Николай Сергеевич
RU2823592C1
ЦИРКОНИЙ-НИОБИЕВЫЙ КИСЛОРОДСОДЕРЖАЩИЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2002
  • Заводчиков С.Ю.
  • Аржакова В.М.
  • Бочаров О.В.
  • Зуев Л.Б.
  • Котрехов В.А.
  • Рождественский В.В.
  • Тарасевич О.С.
  • Филиппов В.Б.
  • Шиков А.К.
RU2227171C1
СПЛАВ НА ОСНОВЕ ЦИРКОНИЯ, УСТОЙЧИВЫЙ К ТЕКУЧЕСТИ И КОРРОЗИИ ПОД ДЕЙСТВИЕМ ВОДЫ И ПАРА, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ В ЯДЕРНОМ РЕАКТОРЕ 1997
  • Ребейролль Вероник
  • Шарке Даниель
RU2199600C2

Реферат патента 2007 года ТРУБЫ ИЗ СПЛАВОВ НА ОСНОВЕ Z И МЕТОД ИХ ИЗГОТОВЛЕНИЯ

Трубы для использования в ядерных реакторах, изготовленные из сплавов на основе Zr. Один сплав содержит 2,5-2,8 вес.% Nb, 0,1-0,13 вес.% О, 0,05-0,13 вес.% Fe, остальное - Zr, второй сплав содержит 0,9-1,2 вес.% Nb, 1,1-1,42 вес.% Sn, 0,3-0,47 вес.% Fe, 0,05-0,12 вес.% О, остальное - Zr. Способ изготовления бесшовных труб направлен на увеличение стойкости к замедленному гидридному растрескиванию (ЗГР), высокую вязкость разрушения, однородные механические свойства по длине - коррозионная стойкость, прочность, скорость ползучести, а именно изготовление указанных труб со следующими характеристиками: скорость ЗГР менее 6×10-8 м/с при 250°С, пороговый коэффициент интенсивности напряжений более 10 МПа√м при 250°С и сопротивление вязкому разрушению, dJ/da, более чем 250 МПа при 250°С, предел прочности на растяжение более 480 МПа при 300°С. 3 н. и 13 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 298 042 C2

1. Способ изготовления бесшовных труб из сплавов на основе циркония, включающий гомогенезирующую обработку выдавленных трубных гильз в области (α+β) фазы, закалку в воду, отжиг со снятием напряжения в области α-фазы, 1-ю холодную прокатку, промежуточный отжиг, 2-ю холодную прокатку и окончательный отжиг, отличающийся тем, что гомогенезирующую обработку в области (α+β) фазы осуществляют при температуре на 20-60°C ниже температуры превращения (α+β)/β, при этом общая деформация Dt после 1-й и 2-й холодной прокатки более 70% и Q-фактор на 2-й холодной прокатке не менее 5, а отношение Q-фактора между 2-й и 1-й холодной прокаткой больше 2, промежуточный отжиг между двумя холодными прокатками проводят в области α-фазы или в области (α+β) фазы и окончательный отжиг проводят в области α-фазы при температуре на 120-270°С ниже температуры превращения α/(α+β), при этом

где Ab - исходная площадь поперечного сечения трубы до холодной прокатки и Af - окончательная площадь поперечного сечения после холодной прокатки

где Δt=tf-tb, Δd=df-db, tb и db - толщина и средний диаметр трубы до холодной прокатки, tf и df - толщина и средний диаметр трубы после холодной прокатки.

2. Способ по п.1, отличающийся тем, что выдавленные трубные гильзы изготавливают из сплава на основе циркония, содержащего 2,5-2,8 вес.% ниобия, 0,1-0,13 вес.% кислорода, 0,05-0,13 вес.% железа, примеси - <0,0005 вес.% водорода, <0,0065 вес.% азота, <0,0001 вес.% хлора, <0,0125 вес.% углерода, <0,0010 вес.% фосфора и остальное цирконий.3. Способ по п.2, отличающийся тем, что промежуточный отжиг после 1-й холодной прокатки осуществляют при температуре на 30-130°C выше температуры превращения α/(α+β), а окончательный отжиг осуществляют при температуре на 120-220°C ниже температуры превращения α/(α+β).4. Способ по п.3, отличающийся тем, что сплав на основе циркония имеет средний объем β-Zr фазы не менее 10 об.% и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, более 0,75.5. Способ по п.3, отличающийся тем, что сплав на основе циркония имеет средний объем β-Zr фазы 10-20 об.% и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr-ft, 0,75-0,90.6. Способ по п.1, отличающийся тем, что выдавленные трубные гильзы изготавливают из сплава на основе циркония, содержащего 0,9-1,2 вес.% ниобия, 1,1-1,42 вес.% олова, 0,3-0,47 вес.% железа, 0,05-0,12 вес.% кислорода, примеси - <0,0005 вес.% водорода, <0,0065 вес.% азота, <0,0001 вес.% хлора, <0,0125 вес.% углерода, <0,0010 вес.% фосфора и остальное цирконий.7. Способ по п.6, отличающийся тем, что выдавленные трубные гильзы получают из слитков, подверженных β-закалке со скоростью охлаждения выше 50°C/с.8. Способ по п.7, отличающийся тем, что промежуточный отжиг после 1-й холодной прокатки проводят при температуре на 70-130°C ниже температуры превращения α/(α+β) и окончательный отжиг при температуре на 120-270°C ниже температуры превращения α/(α+β).9. Способ по п.8, отличающийся тем, что частицы второй фазы Zr(Nb, Fe)2 составляют не более 1 об.% и имеют средний диаметр не более 0,05 мкм и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, более 0,9.10. Способ по п.8, отличающийся тем, что частицы второй фазы Zr(Nb, Fe)2 имеют средний диаметр не более 0,05 мкм и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, 0,9-1,3.11. Труба из сплава на основе циркония, отличающаяся тем, что труба изготовлена по способу п.1 и сплав содержит 2,5-2,8 вес.% ниобия, 0,1-0,13 вес.% кислорода, 0,05-0,13 вес.% железа, примеси - <0,0005 вес.% водорода, <0,0065 вес.% азота, <0,0001 вес.% хлора, <0,0125 вес.% углерода, <0,0010 вес.% фосфора и остальное цирконий, и имеет средний объем β-Zr фазы не менее 10 об.% и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, более 0,75.12. Труба по п.11, отличающаяся тем, что сплав на основе циркония имеет средний объем β-Zr фазы 10-20 об.% и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, от 0,75 до 0,9.13. Труба по п.11 или 12, отличающаяся тем, что скорость замедленного гидридного растрескивания менее 6×10-8 м/с при 250°C, пороговый коэффициент интенсивности напряжений не менее 10 МПа/м при 250°C, сопротивление вязкому разрушению, dJ/da, более 300 МПа при 250°C и прочность на растяжение более 480 МПа при 300°C.14. Труба из сплава на основе циркония, отличающаяся тем, что труба изготовлена по способу п.1 и сплав содержит 0,9-1,2 вес.% ниобия, 1,1-1,42 вес.% олова, 0,3-0,47 вес.% железа, 0,05-0,12 вес.% кислорода, и примеси - <0,0005 вес.% водорода, <0,0065 вес.% азота, <0,0001 вес.% хлора, <0,0125 вес.% углерода, <0,0010 вес.% фосфора и остальное цирконий, имеет частицы второй фазы Zr(Nb, Fe)2 не более 1 об.% со средним диаметром не более 0,05 мкм и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, более 0,9.15. Труба по п.14, отличающаяся тем, что частицы второй фазы Zr(Nb, Fe)2 имеют средний диаметр не более 0,05 мкм и текстуру с отношением компонентов базисного полюса в радиальном и тангенциальном направлениях, fr/ft, от 0,9 до 1,3.16. Труба по п.14 или 15, отличающаяся тем, что скорость замедленного гидридного растрескивания менее 6×10-8 м/с при 250°C, пороговый коэффициент интенсивности напряжений более 10 МПа/м при 250°C, сопротивление вязкому разрушению, dJ/da, более 250 МПа при 250°C и прочность на растяжение более 480 МПа при 300°C.

Документы, цитированные в отчете о поиске Патент 2007 года RU2298042C2

US 5560790, 01.10.1996
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБНЫХ ИЗДЕЛИЙ ИЗ ЦИРКОНИЕВЫХ СПЛАВОВ (ВАРИАНТЫ) 1997
  • Актуганова Е.Н.
  • Бочаров О.В.
  • Буховцев В.Ф.
  • Заводчиков С.Ю.
  • Котрехов В.А.
  • Лосицкий А.Ф.
  • Селиверстов В.Ф.
  • Шевнин Ю.П.
RU2123065C1
СПОСОБ ПОЛУЧЕНИЯ ТРУБНЫХ ЗАГОТОВОК ИЗ ЦИРКОНИЙ-НИОБИЕВЫХ СПЛАВОВ 2003
  • Агапитов В.А.
  • Ахтонов С.Г.
  • Бочаров О.В.
  • Кабанов А.А.
  • Кропачев С.Ю.
  • Лосицкий А.Ф.
  • Ноздрин И.В.
  • Филиппов В.Б.
  • Черемных Г.С.
  • Шиков А.К.
RU2240188C1

RU 2 298 042 C2

Авторы

Маркелов Владимир Андреевич

Шебалдов Павел Васильевич

Желтковская Татьяна Николаевна

Актуганова Елена Николаевна

Белов Владимир Иванович

Заводчиков Сергей Юрьевич

Ким Янг Сук

Им Кьюнг Соо

Чеонг Ионг Моо

Ким Сунг Соо

Даты

2007-04-27Публикация

2004-12-24Подача