Изобретение относится к области угловых измерений, в частности к системам обнаружения и измерения азимутальных координат импульсных источников излучения, таких как вспышки при запуске ракет, ПТУРС.
Известны устройства для измерения азимута светоизлучающих объектов, содержащие N приемных объективов, оптические оси которых расположены в азимутальной плоскости так, что угол между оптическими осями соседних приемных объективов равен 360°/N [1, 2, 3]. Недостатком данных устройств является низкая точность измерения азимута и недостаточная дальность действия.
Наиболее близким по технической сущности и достигаемому результату является устройство для определения азимута светоизлучающих объектов, содержащее одно кольцо из N клиновидных секторных объективов с углами клина по азимуту 360°/N, по углу места угол клина задается требуемым угловым полем, входной конец клина выполнен в виде сферы, выходной торец плоский и совпадает с фокальной плоскостью объектива, объективы соприкасаются боковыми поверхностями и образуют кольцевую монолитную оптическую систему, выходной торец каждого объектива оптически сопряжен с фоточувствительным слоем приемника излучения, подключено к соответствующему входу блока обработки сигналов [3]. Недостатком данного устройства является недостаточная точность измерения азимутальной координаты и низкая обнаружительная способность.
Целью изобретения является повышение надежности обнаружения объекта и увеличение точности измерения азимутальных координат.
Указанная цель достигается тем, что в конструкцию устройства включено дополнительное кольцо секторных объективов, аналогичное первому, но смещенное по азимуту на угол, равный половине угла сектора, то есть на угол Δα=360°/2N.
Количество секторных объективов, таким образом, увеличивается в два раза, поэтому пространственное разрешение определяемое углом между оптическими осями секторов Δα, в два раза увеличивается по сравнению с прототипом, то есть точность измерения координат увеличивается в два раза. При этом площадь входного зрачка, определяемая входной поверхностью секторного объектива остается неизменной, поэтому сохраняется прежняя обнаружительная способность. В том случае, если число секторов в каждом кольце уменьшить вдвое, оставить равным N, как в прототипе, площадь входного зрачка увеличится вдвое, что соответственно увеличит обнаружительную способность устройства.
Сущность изобретения поясняется чертежами, где на фиг.1 представлена принципиальная оптическая схема устройства для обнаружения импульсных целей и измерения их азимутальных координат, а на фиг.2 показана оптическая схема одного из оптических каналов устройства.
Устройство содержит два кольца секторных объективов, выполненных в виде клиньев. Каждое кольцо содержит N секторных объективов 1. Объектив представляет собой линзу, передняя (входная) поверхность 2 которой является светосильной (сферической или асферической), а задняя (выходная) 3 - плоской. Угол сектора равен 360°/N. Выходная поверхность объектива сопряжена с чувствительной площадкой приемника излучения 4, размерами a×b, определяющими азимутальное угловое поле α и высотное поле h. Секторные объективы примыкают друг к другу боковыми гранями, образуя кольцо.
Устройство работает следующим образом. Поток излучения от цели, расположенной в угловом поле a×h одного из объективов, попадает на чувствительную площадку приемника излучения, находящегося в фокальной плоскости объектива. Сигнал с приемника излучения поступает в электронный тракт обработки сигнала (на чертежах не показан). Азимутальная координата определяется по номеру оптического канала, в который поступает излучение от цели. Обнаружение производится по дешифрировочным признакам цели, заложенным в алгоритм обнаружения, реализуемый в электронном тракте, к которому подключены приемники излучения. Использование дополнительного кольца секторных объективов, смещенных на Δα, позволяет либо увеличить вдвое площадь входного зрачка, либо, сохранив зрачок, вдвое увеличить пространственное разрешение по азимуту.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ И ИЗМЕРЕНИЯ АЗИМУТАЛЬНЫХ КООРДИНАТ СВЕТОИЗЛУЧАЮЩИХ ОБЪЕКТОВ | 2008 |
|
RU2384820C1 |
ЛАЗЕРНЫЙ КОГЕРЕНТНЫЙ ЛОКАТОР ДЛЯ РАКЕТ МОРСКОГО БАЗИРОВАНИЯ | 2014 |
|
RU2565821C1 |
ЛАЗЕРНЫЙ КОГЕРЕНТНЫЙ ЛОКАТОР ЦЕЛЕУКАЗАНИЯ | 2014 |
|
RU2563312C1 |
ОПТИКО-ЭЛЕКТРОННОЕ УСТРОЙСТВО КРУГОВОГО ОБЗОРА | 2006 |
|
RU2321016C1 |
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ АСТРОНОМИЧЕСКИХ КООРДИНАТ ОБЪЕКТА | 2017 |
|
RU2654932C1 |
СПОСОБ ОБРАБОТКИ ИНФОРМАЦИИ В ЛАЗЕРНОМ КОГЕРЕНТНОМ ЛОКАТОРЕ С МАТРИЧНЫМ ФОТОПРИЕМНИКОМ | 2007 |
|
RU2354994C1 |
Оптико-пеленгационная система кругового обзора | 2020 |
|
RU2748872C1 |
Оптоэлектронный измеритель координат воздушных целей | 2018 |
|
RU2674563C1 |
СПОСОБ ИЗМЕРЕНИЯ РАССТОЯНИЯ ДО ОБЪЕКТОВ, ИХ УГЛОВЫХ КООРДИНАТ И ВЗАИМНОГО РАСПОЛОЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2575318C1 |
МНОГОФУНКЦИОНАЛЬНАЯ ОПТИКО-ЛОКАЦИОННАЯ СИСТЕМА | 2005 |
|
RU2292566C1 |
Изобретение относится к области угловых измерений, в частности к системам обнаружения и измерения азимутальных координат импульсных источников излучения, таких как вспышки при запуске ракет, ПТУРС. Устройство для обнаружения и измерения азимутального угла светоизлучающих импульсных объектов, содержит N образующих кольцо приемных оптических каналов, оптические оси которых расположены в азимутальной плоскости через угол Δα=360°/N, N приемников излучения, расположенных в фокальной плоскости каждого канала и подключенных к электронному тракту, при этом в него включено дополнительное аналогичное кольцо из N приемных оптических каналов, повернутое в азимутальной плоскости на угол Δα/2, а приемники излучения каналов второго кольца подключены к электронному тракту. Технический результат - повышение надежности обнаружения объекта и увеличение точности измерения азимутальных координат. 2 ил.
Устройство для обнаружения и измерения азимутального угла светоизлучающих импульсных объектов, содержащее N образующих кольцо приемных оптических каналов, оптические оси которых расположены в азимутальной плоскости через угол Δα=360°/N, N приемников излучения, расположенных в фокальной плоскости каждого канала и подключенных к электронному тракту, отличающееся тем, что в него включено дополнительное аналогичное кольцо из N приемных оптических каналов, повернутое в азимутальной плоскости на угол Δα/2, а приемники излучения каналов второго кольца подключены к электронному тракту.
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ И ИЗМЕРЕНИЯ АЗИМУТАЛЬНЫХ КООРДИНАТ СВЕТОИЗЛУЧАЮЩИХ ОБЪЕКТОВ | 2008 |
|
RU2384820C1 |
US 5920337 A, 06.07.1999 | |||
ПАССИВНОЕ НЕСКАНИРУЮЩЕЕ ТЕЛЕВИЗИОННОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АЗИМУТА И (ИЛИ) КООРДИНАТ ОБЪЕКТА | 2004 |
|
RU2277250C2 |
US 20004223056 A1, 11.11.2004. |
Авторы
Даты
2013-09-27—Публикация
2012-04-10—Подача