Изобретение относится к металлургии и строительству и может быть использовано в черной металлургии в качестве огнеупорного неформованного материала для монтажа и ремонта футеровки сталеплавильных конверторов, электродуговых, мартеновских, нагревательных и закалочных печей, ковшей, в цветной металлургии - для монтажа и ремонта футеровки медеплавильных и цинковых конверторов, отражательных и ванных печей, вращающихся вельц-печей, а также в цементной промышленности - для монтажа и ремонта вращающихся печей по обжигу цементного клинкера, и огнеупорной - для футеровки вращающихся и туннельных печи.
Известен экзотермический огнеупорный мертель по (RU 2163579 C04B 35/65, публ. 27.02.2001 г.) [1]. Материал содержит, масс.%: оксид железа - 22-40, алюминий - 17-29, огнеупорную глину - 15-23, глинозем - 5-22, гипс - 4-15, триполифосфат натрия - 1-3.
Данный состав имеет низкие реологические свойства (текучесть, открытое время - время, в течение которого смесь технологична и может использоваться в работе), а так же при высокой термичности имеет низкую температуру плавления (1280-1500°C), что не позволяет использовать ее при футеровки тепловых агрегатов с температурами эксплуатации более 1500°C.
Известна огнеупорная масса для керамической наплавки (RU №94024878, публ. 20.08.1996 г.) [2]. Масса содержит, масс.%: огнеупорный наполнитель 65-88, горючие составляющие 10-26, ферросилиций 2-10.
Известен термитно-огнеупорная масса для керамической наплавки (RU №2158403, C04B 35/65, публ. 27.10.2000 г.) [3]. Известная огнеупорная масса содержит, масс.%: огнеупорный порошкообразный наполнитель (динас, шамот, диабазовая мука, муллитокорунд, корунд, магнезит, хромомагнезит, доломит и/или их смеси с размером частиц порошка не более 2 мм) - 30-60, металлический порошок (алюминий, кремний, магний, сплавы алюминия с кремнием или магнием, ферросилиций, силикокальций и/или их смеси) - 10-30, окислы железа - 10-30, твердофазный окислитель (селитра, и/или соединения четырех-шестивалентного марганца, и/или соединения шестивалентного хрома) - 15-25.
Вышеприведенные массы могут использоваться только для горячих ремонтов тепловых агрегатов и не могут применяться для их монтажа. Получаемый при горячем ремонте наплавляемый материал имеет высокую открытую пористость после термообработки (до 19%) и низкую температуру начала деформации под нагрузкой (до 1650°C), что отрицательно сказывается на стойкости футеровки теплового агрегата.
В качестве наиболее близкого аналога известен огнеупорный связующий материал для футеровки высокотемпературных тепловых агрегатов (RU №2116274, публ. 27.07.1998 г.) [4]. Материал содержит, масс.%: магнезиальный заполнитель в качестве основы, порошок алюминия - 7.5-11.5, феррофосфорный порошок - 18.5-28.5, раствор сульфата магния, плотностью 1.20 г/см3 - в качестве жидкой связки (сверх 100%) - 9-30.
Использование в составе известного огнеупорного материала компонентов, содержащих в заметных количествах фосфор (порошок феррофосфора) и серу (сульфат магния), исключает возможность его использования на контакте с расплавами черных металлов. Отсутствие в составе известного огнеупорного материала компонентов, регулирующих реологические свойства раствора, не позволяет получать устойчивые к коагуляции суспензии и резко сокращает время "живучести" готового раствора, ограничивая возможности нанесения готового раствора на вертикальные поверхности и свод. Двухкомпонентность состава известного материала подразумевает приготовление его на площадке потребителя, что не гарантирует оптимальное отношение твердая фаза / жидкость в готовом растворе и оставляет возможность для снижения стойкости огнеупорной футеровки. Невозможность достижения заявленных показателей качества при применении материала без жидкой составляющей не позволяет гарантировать качество материала при его приготовлении в условиях предприятия-потребителя и сокращает сроки хранения материала, а следовательно и его экономическую эффективность.
Задача, на решение которой направлено изобретение, состоит в повышении прочности и плотности футеровки теплового агрегата, повышении сроков ее эксплуатации, а так же снижении затрат на монтаж и ремонт футеровки.
Для решения поставленной технической задачи огнеупорный материал для монтажа и ремонта футеровки тепловых агрегатов, содержит хромсодержащий огнеупорный заполнитель, экзотермические добавки - порошок алюминия и смесь оксидов двух- и трехвалентного железа, функциональные добавки - глину огнеупорную, природный щелочной алюмосиликат, гидравлически активный алюминат, органический тиксотропный компонент, органический структурообразующий компонент, неорганический структурообразующий компонент, сухое растворимое связующее, масс.%:
Хромсодержащий огнеупорный заполнитель может быть выбран из группы магнезиальных, магнезиальнохромитовых, хромитовых, корундохромитовых, шпинельных, магнезиальношпинельных огнеупорных материалов или их комбинаций.
Сущность изобретения заключается в следующем. В заявленном огнеупорном материале процесс первичной адгезии материала с поверхностью футеровки и схватывания "на холоду" происходит за счет взаимодействия природных и синтетических тиксотропных и структурообразующих компонентов и сухого растворимого связующего с тонкомолотыми компонентами. Соотношение синтетический тиксотропный материал/природный тиксотропный материал/органический структурообразующий компонент/неорганический структурообразующий компонент/вода позволяет регулировать реологические свойства огнеупорного материала в широких пределах - от текучего раствора до торкрет-массы с высокой адгезией к вертикальным поверхностям.
Окончательные свойства огнеупорный материал приобретает в процессе нагрева за счет энергии экзотермической реакции между порошком алюминия и смесью оксидов железа, что обеспечивает полное спекание огнеупорного материала реакциями тонкомолотых компонентов с природным щелочным алюмосиликатом, гидравлически активным алюминатом и сухим растворимым связующим. Оксиды железа взаимодействуют с огнеупорным заполнителем и образуют высокотемпературные соединения - магнезиовюстит с температурой плавления 2100°С и магнезиоферрит с температурой плавления 1750°С, шпинельные и шпинелидные твердые растворы с температурой плавления более 1750°С. Все эти реакции сопровождаются увеличением объема, что также увеличивает прочность и плотность огнеупорной футеровки. Соотношение тонкомолотый огнеупорный материал/природный щелочной алюмосиликат/гидравлически активный алюминат/сухое растворимое связующее позволяет регулировать температуру эксплуатации огнеупорного материала в зависимости от решаемой материалом технической задачи. Отсутствие в составе огнеупорного материала компонентов, содержащих серу и фосфор, позволяет использовать его на контакте с расплавом металла и шлака в черной металлургии без угрозы понизить качество выплавляемого/обрабатываемого металла, а наличие заполнителя, обладающего повышенной химической стойкостью к расплавам на основе железа, как в окисленной форме - шлаки - так и в восстановленной форме - металл, позволяет повысить стойкость футеровки к коррелирующему воздействию и увеличить межремонтный период теплового агрегата.
Новый технический результат, достигаемый заявленным изобретением, заключается в повышении прочности сцепления раствора с футеровкой, снижении пористости, повышении холодной прочности и сроков схватывания массы, а также повышении скорости спекания.
В примерах 1-12 таблицы 1 приведены составы заявляемого огнеупорного материала. Состав 13 соответствует прототипу [4], а состав 14 - массе [1]. В качестве огнеупорного заполнителя в примерах 1, 2, 5, 6, 9, 10 использовали периклазохромит, хромитопериклаз, хромшпинделит, в остальных примерах - хромит, корундохромит, периклазшпинель. В качестве смеси оксидов двух- и трехвалентного железа - металлическую окалину или мартеновскую пыль. В качестве органического тиксотропного компонента, придающего системе способность разжижаться при перемешивании мгновенно загущяться без него, использовали эфир целлюлозы, редеспергирующие эфиры крахмала, винилацетатные сопополимеры. В качестве органического структурообразующего компонента были использованы полипропиленовое, полиэтиленовое, поливинилацетатное, графитовое или бумажное волокна, а также эковата. В качестве неорганического структурообразующего компонента - минеральное или алюмосиликатное волокно, стекловолоконо, базальтловое волокно. Органические компоненты работают мгновенно после нанесения состава на изделие или ремонтируемую поверхность, а неорганические - при повышенной температуре удерживают структуру до того момента, когда начнется спекание минеральной части, то есть когда загорится термитная смесь.
Изготовление материала происходит в четыре стадии:
1. Приготовление смеси совместного тонкого помола, состоящей из огнеупорного заполнителя, огнеупорной глины, природного щелочного алюмосиликата, сухого растворимого связующего и органического тиксотропного компонента в шаровой, вибрационной или трубной мельнице;
2. Приготовление экзотермической добавки путем смешения порошка алюминия и смеси оксидов двух- и трехвалентного железа в механическом смесителе;
3. Приготовление готовой сухой смеси путем смешения в механическом смесителе смеси совместного помола и экзотермической смеси;
4. Приготовление готового раствора путем смешения готовой сухой смеси с теплой водой в смесителе принудительного действия или в торкрет - машине.
Из материала составов, приведенных в таблице 1, были изготовлены образцы в виде цилиндров диаметром и высотой 50 мм. Результаты лабораторных испытаний свойств огнеупорного материала - склеивание плашек магнезиального, периклазохромитового, периклазошпинельного составов приведены в таблице 2 в сравнении с растворами известного состава 14 и состава 13. Из данных таблицы 2 следует, что заявленный огнеупорный материал обладает повышенной прочностью сцепления раствора с футеровкой, имеет сниженную пористость, повышенные холодную прочность и сроки схватывания массы (открытое время).
Составы огнеупорного материала 1-4 применялись качестве мертеля для связывания отдельных изделий в футеровке теплового агрегата; составы 5-8 - в качестве торкрет - массы для монтажа и ремонта футеровки теплового агрегата; составы 9-12 - в качестве обмазки для защиты футеровки теплового агрегата.
В качестве огнеупорного мертеля материал использовали при футеровке кладки передней стенки и вертикальных каналов футеровки мартеновских печей ФГУП "УралВагонзавод", сводов электросталеплавильных печей ОАО "ЧЭМК".
В качестве защитного покрытия - при ремонте футеровки методических нагревательных печей ОАО "Чусовской металлургический завод", ОАО "ПНТЗ", защиты футеровки нагревательных методических печей ОАО "Чусовской металлургический завод". Материал по изобретению дает в кладке ровный, плотный шов без трещин, не выкрашивается из швов кладки, а в виде спека сохраняется до конца кампании печи. Покрытие из заявленного материала обладает высокой адгезией к поверхности огнеупорной футеровки и высокой химической и абразивной стойкостью.
Материал в виде огнеупорного мертеля использовался для монтажа сводов дуговых электросталеплавильных печей ОАО "ЧЭМК". В результате применения материала стойкость сводов увеличилась в 2-2.5 раза и достигла 210-250 плавок.
Таким образом, заявленный материал может быть использован в качестве огнеупорного раствора для кладки огнеупорных изделий при монтаже, в качестве ремонтной и/или подварочной массы при ремонте, а также в качестве торкрет - массы и/или защитного покрытия. Например, для монтажа огнеупорных изделий и/или бетонных блоков в кладке футеровки в виде водного раствора с влажностью 20-30%; для нанесения защитного или ремонтного торкрет - покрытия на огнеупорную футеровку в виде массы, влажностью 3-7% и для монтажа огнеупорных изделий и/или бетонных блоков в кладке футеровки и ремонта горизонтальных поверхностей в виде сухого порошка.
название | год | авторы | номер документа |
---|---|---|---|
ЛИТЕЙНЫЙ НИКЕЛЕВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ | 2010 |
|
RU2446221C1 |
ОКСИДНО-УГЛЕРОДИСТЫЙ ОГНЕУПОР | 2007 |
|
RU2356869C1 |
ЖАРОСТОЙКИЕ ВОЛОКНА | 2006 |
|
RU2427546C2 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ФТОРИРОВАНИЯ ГАЛОГЕНИРОВАННЫХ УГЛЕВОДОРОДОВ | 2009 |
|
RU2402378C1 |
БИОДЕГРАДИРУЕМАЯ ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКАЯ ГИДРОГЕЛЕВАЯ ПЛАСТИНА И СПОСОБ ЕЁ ПОЛУЧЕНИЯ (ВАРИАНТЫ) | 2020 |
|
RU2732241C1 |
СОСТАВ ДЛЯ БРИКЕТИРОВАННОГО ТОПЛИВА | 1999 |
|
RU2157401C1 |
Сырьевая смесь для изготовления жаростойкого бетона | 1986 |
|
SU1447791A1 |
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ | 2004 |
|
RU2264367C1 |
КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ (ВАРИАНТЫ) И СПОСОБ КОНВЕРСИИ ОЛЕФИНА С ЕЕ ПРИМЕНЕНИЕМ | 2001 |
|
RU2266784C2 |
ФОТОННО-КРИСТАЛЛИЧЕСКОЕ ЭЛЕКТРООПТИЧЕСКОЕ ВОЛОКНО И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2007 |
|
RU2397516C2 |
Огнеупорный материал для монтажа и футеровки тепловых агрегатов может быть использован в качестве огнеупорного неформованного материала для монтажа и ремонта футеровки сталеплавильных конверторов, электродуговых, мартеновских, нагревательных и закалочных печей, ковшей, для монтажа и ремонта футеровки медеплавильных и цинковых конверторов, отражательных и ванных печей, вращающихся вельц-печей, а также для монтажа и ремонта вращающихся печей по обжигу цементного клинкера, и для футеровки вращающихся и туннельных печей. Материал имеет следующий состав мас.%: огнеупорный заполнитель 39.0-84.0; глина огнеупорная 0.5-7.0; природный щелочной алюмосиликат 0.01-5.0; гидравлически активный алюминат 0.05-1.0; органический тиксотропный компонент 0.1-1.0; органический структурообразующий компонент 0.1-1.0; неорганический структурообразующий компонент 0.1-1.0; сухое растворимое связующее 0.1-10.0; порошок алюминия 2.0-15.0; смесь оксидов двух- и трехвалентного железа 10.0-35.0. Новый технический результат, достигаемый заявленным изобретением, заключается в повышении прочности сцепления раствора с футеровкой, снижении пористости, повышении холодной прочности и сроков схватывания массы, а также повышении скорости спекания. 1 з.п. ф-лы, 2 табл.
1. Огнеупорный материал для монтажа и ремонта футеровки тепловых агрегатов, содержащий огнеупорный заполнитель в качестве основы, порошок алюминия - в качестве экзотермической добавки, глину огнеупорную - в качестве функциональной добавки, отличающийся тем, что материал содержит хромсодержащий огнеупорный заполнитель, экзотермические добавки - порошок алюминия и смесь оксидов двух- и трехвалентного железа, функциональные добавки - глину огнеупорную, природный щелочной алюмосиликат, гидравлически активный алюминат, органический тиксотропный компонент, органический структурообразующий компонент, неорганический структурообразующий компонент, сухое растворимое связующее, мас.%:
2. Материал по п.1, отличающийся тем, что содержит хромсодержащий огнеупорный заполнитель, выбранный из группы магнезиальных, магнезиальнохромитовых, хромитовых, корундохромитовых, шпинельных, магнезиальношпинельных огнеупорных материалов или их комбинаций.
ОГНЕУПОРНЫЙ СВЯЗУЮЩИЙ МАТЕРИАЛ ДЛЯ ФУТЕРОВКИ ВЫСОКОТЕМПЕРАТУРНЫХ ТЕПЛОВЫХ АГРЕГАТОВ | 1996 |
|
RU2116274C1 |
ОГНЕУПОРНАЯ НАБИВНАЯ МАССА | 0 |
|
SU274696A1 |
ЭКЗОТЕРМИЧЕСКИЙ ОГНЕУПОРНЫЙ МЕРТЕЛЬ | 1996 |
|
RU2163579C2 |
DE 3201809 А, 02.09.1989 | |||
Способ непрерывной и полунепрерывной разливки металлов | 1977 |
|
SU758632A1 |
Авторы
Даты
2013-11-10—Публикация
2012-04-06—Подача