СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛАМИНОЭТИЛАКРИЛАТА Российский патент 2013 года по МПК C07C67/03 C07C69/54 

Описание патента на изобретение RU2497802C1

Изобретение относится к способу получения диалкиламиноэтиловых эфиров акриловой кислоты, а именно к способу получения диметиламиноэтилакрилата (ДМАЭА).

ДМАЭА используют как сырьевой компонент для производства водорастворимых полимеров, имеющих широкий спектр применения в качестве флокулянтов, антистатиков, экстрагентов и т.п.

Известно, что ДМАЭА получают переэтерификацией метилакрилата диметилэтаноламином (ДМЭА) в присутствии жидкофазного катализатора переэтерификации (kt).

В результате образуется целевой аминоакрилат и побочный продукт реакции - метанол:

Реакция обратима и для того, чтобы повысить степень превращения исходных реагентов в целевой продукт, образующийся метанол удаляют из реакционной смеси дистилляцией в виде азеотропа с исходным метил(мет)акрилатом [ЕР 0906902 B1, опубл. 28.02.2002; US 6977310 B2, опубл. 20.12.2005].

В качестве катализатора переэтерификации предпочтительно использование нейтральных катализаторов - алкоксипроизводных титана [US 4281175 опубл. 28.07.1981, US 6977310 B2, опубл. 20.12.2005] или олова [US 4301297, опубл. 17.11.1981; US 7078560 B2, опубл. 18.07.2006]. Авторами способа [US 2009/0253930 А1, опубл. 8.10.2009] проведены сравнительные испытания активности и селективности ряда катализаторов переэтерификации в одинаковых условиях. Лучшие результаты получены при использовании катализатора Ti(ДМЭА)4 - тетра-N,N-диметиламиноэтоксититаната.

Кроме целевой реакции при этом протекают побочные процессы: обратимые реакции переэтерификации и необратимые реакции акрилата и ДМАЭА по двойной связи - при этом образуются продукты, обозначенные в литературе как «продукты реакции Михаэля». Скорость основных и побочных реакций зависит как от используемого катализатора, так и от условий проведения синтеза. Поэтому вопрос аппаратурного оформления реакторного узла в большой степени определяет селективность и скорость целевой реакции, а также объем инвестиций при организации промышленного производства.

Известно, что реакцию переэтерифиции проводят в эфиризаторе - емкостном реакторе с перемешиванием, соединенным по газовой фазе с ректификационной колонной для удаления побочного спирта, при повышенной температуре (100-140°С), атмосферном или пониженном давлении (400-800 mбар), в присутствии гомогенного катализатора и ингибитора полимеризации. Исходный метил(мет)акрилат подают в 1÷3 кратном мольном избытке к диметилэтаноламину [ЕР 0906902 B1, опубл. 28.08.2002; US 6977310 B2, опубл. 20.12.2005, US 7078560 B2, опубл. 18.07.2006].

Возможно проведение процесса переэтерификации в реакторной колонне [US 2009/0253930 А1, опубл. 08.10.2009]. Этот вариант аппаратурного оформления используют в том случае, если в реакционную смесь вводят вспомогательный растворитель - дибензиловый эфир, дибутиловый эфир диэтиленгликоля и т.п. для предотвращения образования азеотропа метил(мет)акрилат - метанол. Способ позволяет отгонять метанол с содержанием метил(мет)акрилата на уровне 1-2%. Основной недостаток способа состоит в том. что поток вспомогательного растворителя составляет ~60% общего потока реакционной смеси.

Авторы способа [US 7294240 В2, опубл. 13.11.2007] предлагают проводить переэтерификацию низших алкил (этил,бутил)(мет)акрилатов диметилэтаноламином в присутствии алкоголята титана в одном реакторе или каскаде реакторов, соединенных, по крайней мере, с одной ректификационной колонной, при температуре 100-130°С, давлении 400-600 мбар. В случае каскада реакторов температура в них может быть одинаковой или разной, но должна предпочтительно увеличиваться от предыдущего реактора к последующему в пределах указанного диапазона.

Предпочтительным вариантом реализации способа является проведение процесса в, по крайней мере, одном реакторе, соединенном с колонной (реактор-эфиризатор), из которого реакционная смесь поступает в постреактор, связанный по газовой фазе либо с предыдущим реактором либо с колонной, предыдущего реактора-эфиризатора.

Температура в постреакторе должна быть на 1-10°С выше, чем в основном реакторе.

Время пребывания в реакционной зоне (реактор-постреактор) - 1,5-3 часа.

Ректификационная колонна, соединенная с реактором, имеет 10-30 теоретических тарелок, флегмовое число 7÷15. Процесс проводят в присутствии, по крайней мере, одного ингибитора полимеризации (фенотиазин, гидрохинон, р-метоксифенол и т.п.).

Известен непрерывный способ получения ДМАЭА [US 7268251 В2, опубл. 11.09.2007] - прототип.

Способ включает в себя:

- стадию приготовления катализатора Ti(ДМЭА)4 переэтерификацией низшего алкоголята титана диметилэтаноламином;

- стадию переэтерификации метил(мет) акрилата диметилэтаноламином;

- дистилляционные стадии выделения целевого эфира (отгонка метил(мет)акрилата, отделение катализатора, выделение ДМАЭА - сырца, очистка целевого эфира, обработка кубовых остатков).

Реакцию переэтерификации метил(мет)акрилата диметилэтаноламином авторы проводят в двух последовательных реакторах с принудительной или естественной циркуляцией, соединенных по газовой фазе с ректификационными колоннами.

Синтез ведут при температуре 100-130°С, давлении 400-600 мбар, мольном отношении метил(мет)акрилат/ДМЭА 1÷4:1 в присутствии гомогенного катализатора, полученного на предварительной стадии, и ингибитора полимеризации. Содержание метанола в реакционной смеси составляет 0,01-0,1% вес. Общее время пребывания - 2-4 часа. Нагрев осуществляют наружными или встроенными теплообенниками. Реакционную зону непрерывно продувают потоком инертного газа (азот, азот/воздух, воздух и т.п.).

Колонны, используемые для удаления метанола, соединенные с реакторами, могут быть насадочными или тарельчатыми (10-30 т.т.), оборудованы трубчатыми или пластинчатыми конденсаторами. Образующийся метанол удаляют через верх колонны с частью исходного метил(мет)акрилата. Флегмовое число 5÷15.

Из второго реактора реакционная смесь поступает в промежуточную емкость. Время пребывания реакционной смеси в этой емкости 0,5-1,5 часа, температура 50-140°С. Часть реакционной смеси (10-75%) из этой емкости направляют на следующую стадию процесса - отгонку метил(мет)акрилата. Другую часть реакционной смеси (25-90%) рециркулируют в реакторы, предпочтительно во второй реактор. Емкость соединена по газовой фазе со вторым реактором или его колонной, т.е. фактически является третьим реактором (дозревателем). Это позволяет увеличить степень превращения ДМЭА и более полно удалить из реакционной смеси образовавшийся метанол.

Отогнанный по верху колонн азеотроп содержит 20-40% метанола, 60-80% метал(мет)акрилат и не более 0,3% ДМЭА. Полученный азеотроп может быть направлен в производство метил(мет)акрилата без дополнительной очистки.

Основным недостатком способа является то, что его промышленная реализация связана с необходимостью использования реакторов-эфиризаторов большого объема (для достижения полной конверсии объем реактора смешения стремится к бесконечности). Поэтому обычно работают на неполной конверсии, непрореагировавшие сырьевые компоненты отделяют от реакционной смеси и возвращают в процесс. Кроме того, реакторный узел организуют в виде двух или более последовательных эфиризаторов (в прототипе их три). Это позволяет уменьшить суммарный объем реакторного узла, однако сильно удорожает затраты на оборудование и усложняет систему управления реакторным узлом, включающий синтез и ректификацию.

Альтернативный способ организации реакторного узла, позволяющий значительно уменьшить реакторный объем - один реактор вытеснения - не подходит для данной реакции, так как без отгонки метанола увеличивается доля побочных реакций, ведущих к снижению селективности.

Целью настоящего изобретения является снижение объема реакторного узла, упрощение его конструкции при сохранении высокой селективности синтеза.

Предлагаемое решение включает каскад из двух типов реакторов, что дает возможность воспользоваться преимуществами обоих типов реакторов и уменьшить роль присущих им недостатков.

Поставленная цель достигается при осуществлении непрерывного каталитического жидкофазного синтеза ДМАЭА из акрилата, присутствующего в избытке, и ДМЭА в двух последовательных реакторах: в первом реакторе вытеснительного типа синтез ведется без отгонки метанола до конверсии ДМЭА 30-40%, во втором - реакторе смешения, оборудованном ректификационной колонной для отгонки метанола, осуществляется полная конверсия ДМЭА, поступающего из 1-го реактора.

На фигуре представлена принципиальная схема реализации способа.

Способ осуществляют следующим образом: сырьевые потоки - метилакрилат, диметилэтаноламин и Ti-содержащий катализатор подают в реактор вытеснения (поз.1) (например, секционированный колонный аппарат) со скоростью, обеспечивающей конверсию ДМЭА 30-40% при температуре в реакторе 100-110°С, мольном соотношении исходных метилакрилата и ДМЭА равном 2-3, содержании П-содержащего катализатора в реакционной смеси 0,5-2%.

Изучение кинетических характеристик целевой и побочных реакций показало, что применение реактора вытеснения на первой стадии синтеза, осуществляемой вдали от равновесия и при температурах способствующих преобладанию скорости целевой реакции над побочными, позволяет иметь высокую селективность процесса. В указанных условиях синтеза селективность составляет ≥98%.

Реакционную смесь, выходящую из первого реактора (поз.1), подают в реактор смешения - эфиризатор (поз.2) - емкостной аппарат с принудительным или естественным перемешиванием, оборудованный ректификационной колонной (поз.3). Температура в эфиризаторе 100-120°С. Метанол, выделяющийся в ходе реакции, непрерывно отгоняют вместе с частью акрилата. За счет этого ускоряется целевая реакция и подавляются побочные реакции с участием метанола.

На вход второго реактора подается объединенный поток реакционной смеси, содержащей непрореагировавший ДМЭА из первого реактора, плюс поток, рециклизируемый из системы разделения реакционной смеси. Во втором реакторе достигается полная конверсия ДМЭА, поступающего из 1-го реактора, но конверсия к общему потоку ДМЭА, включая рецикл ДМЭА, составляет 50-70%.

Реакционная смесь, содержащая ДМАЭА, исходный акрилат, ДМЭА и 1-2% побочных продуктов поступает на разделение. Непрореагировавшие сырьевые компоненты рециклизируют на синтез. Товарный продукт выделяют высокоэффективной ректификацией. Рецикл метилакрилата осуществляют, в основном, в реактор вытеснения, рецикл ДМЭА - в реактор смешения. Это разделение связано с особенностями протекания реакций в двух типах реакторов - смешения и вытеснения. Возвратный поток ДМЭА всегда содержит некоторое количество ДМАЭА - до 20% масс., т.к. колонна для разделения пары компонентов ДМЭА - ДМАЭА всегда работает в режиме максимального исчерпывания ДМЭА из кубовой жидкости. Это обусловлено повышенным требованием к качеству целевого продукта. В товарном ДМАЭА содержание ДМЭА не должно превышать 0,01% масс. Рецикл ДМЭА с примесью ДМАЭА в 1-й реактор, работающий без отгонки метанола, приводит к снижению селективности процесса из-за протекания побочных реакций с участием ДМАЭА. Поэтому рецикл ДМЭА в заявленном способе осуществляется только в реактор смешения.

В сравнении с прототипом предлагаемый способ имеет следующие отличительные признаки:

- способ осуществляется в двух последовательных аппаратах: 1-ый реактор вытеснительного типа без отгонки метанола и 2-ой реактор смесительного типа, оборудованный ректификационной колонной для отгонки метанола (в прототипе - 2(3) реактора смешения, оборудованные двумя ректификационными колоннами для отгонки метанола);

- конверсия ДМЭА в первом аппарате составляет 30-40% (в прототипе в первом реакторе конверсия ДМЭА до 55%);

- рецикл метилакрилата осуществляется в первый аппарат - вытеснения, ДМЭА рециклизируют в аппарат смешения (в прототипе - все рециклизируемые компоненты подают в начало процесса).

Предложенное решение имеет следующие преимущества.

1. Снижение объема реакторного узла:

при одинаковой мощности производства, имеющего близкие параметры синтеза, объем реакторной зоны по предлагаемому способу в ~ на 20% меньше, чем по прототипу.

2. Реактор первой стадии по предлагаемому способу является простым колонным аппаратом без ректификационной колонны. Реакторный узел, состоящий из колонного аппарата и одного эфиризатора, требует значительно меньших инвестиций, обеспечивает устойчивость работы при использовании простых систем управления.

Лабораторная установка для проведения процесса синтеза представлена на фигуре. Исходные вещества метилакрилат, диметилэтаноламин и катализатор - тетра-N,N-диметиламиноэтоксититанат подают непрерывно в первый реактор каскада (поз.1) - аппарат вытеснения, представляющий собой термостатируемую стеклянную трубку диаметром 5 мм и длиной 70 см, температура в реакторе - 100-110°С, давление - равновесное для данного состава и температуры. Реакционная смесь из реактора (поз.1) поступает в реактор-эфиризатор (поз.2) - объемом куба 7000 мл, температура в реакторе (поз.2) - 100-115°С. Метанол отгоняют из реактора (поз.2) и в смеси с метилакрилатом дистиллятом собирают в верхней части надреакторной колонны (поз.3). Реакционная смесь из 2-го реактора, содержащая МА, ДМЭА, ДМАЕА и катализатор, поступает в систему разделения, где после отделения рециклизируемых сырьевых веществ: ДМЭА и МА - выделяют ДМАЕА и катализатор, который также может быть рециклизирован в начало процесса. Рецикл МА осуществляют в реактор (поз.1), рецикл ДМЭА - в реактор (поз.2).

Установка для реализации способа-прототипа состоит из двух последовательных реакторов смешения с ректификационными колоннами, таких как поз.2 и поз.3 на фигуре. Объем первого реактора по заявленному способу - 1,5 л. При меньших объемах этого аппарата невозможно обеспечить конверсию >30% в заданных параметрах синтеза. Объем 2-го аппарата - 7 л. Оба рецикла - МА и ДМЭА - осуществляют в 1-й реактор.

В таблице 1 приведены результаты лабораторных экспериментов по заявленному способу и способу-прототипу, и их сравнение с расчетными данными для демонстрации адекватности математической модели, по которой осуществлялся расчет, как лабораторных экспериментов, так и расчет оборудования для промышленного производства ДМАЕА по заявленному способу и по способу-прототипу.

Расчет реактора 1 для заявленного способа проводили по модели реактора идеального вытеснения (РИВ), расчет реактора 2 и реакторов прототипа - по модели реактора идеального смешения (РИС), совмещенного с ректификационной колонной для отгонки азеотропа метанол - метакрилат. Кинетические характеристики основной и побочных реакций определены специальными опытами. Опыты 1, 3, 4, 5 и 7 демонстрируют эксперимент по заявленному способу в пределах заявленных параметров. В строках 1a, 3a, 4a, 5a и 7a приведены расчетные данные для этих опытов.

Опыты 2, 6, 8 демонстрируют результаты экспериментов по способу-прототипу, строки 2a, 6a, 8a - результаты расчета для этих опытов. Сравнение экспериментальных и расчетных данных подтверждает адекватность модели.

В таблице 2 приведены результаты расчетов промышленных реакторных узлов по заявленному способу и способу-прототипу. Объем реакторного узла по способу-прототипу на ~20% больше, чем по заявленному способу.

Оборудование для промышленного синтеза ДМАЭА по заявленному способу существенно проще - 1-й реактор - колонна, 2-й реактор - емкость в ректификационной колонной. Способ по прототипу: 2 емкостных аппарата с ректификационными колоннами, что требует как больших инвестиций на аппараты, так и более сложной системы регулирования процесса.

Похожие патенты RU2497802C1

название год авторы номер документа
КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ ОКСИД ДИАЛКИЛОЛОВА, И ЕЕ ПРИМЕНЕНИЕ В КАЧЕСТВЕ КАТАЛИЗАТОРА ПЕРЕЭТЕРИФИКАЦИИ ПРИ СИНТЕЗЕ СЛОЖНЫХ (МЕТ)АКРИЛОВЫХ ЭФИРОВ 2010
  • Поль Жан-Мишель
  • Тоннелье Борис
  • Огюстэн Франсис
RU2529863C2
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛ-ТРЕТ-БУТИЛОВОГО ЭФИРА 1991
  • Стряхилева М.Н.
  • Смирнов В.А.
  • Павлов С.Ю.
  • Вавилов А.В.
  • Горшков В.А.
  • Столярчук В.И.
  • Казаков В.П.
  • Рязанов Ю.И.
  • Кожин Н.И.
  • Гаврилов Г.С.
  • Ухов Н.И.
  • Кузьменко В.В.
  • Коваленко В.В.
RU2030383C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА ПРОПИЛЕНА 2011
  • Лаврентьев Иван Анатольевич
  • Луговской Сергей Анатольевич
  • Нагродский Михаил Иосифович
  • Никущенко Наталья Трофимовна
  • Михайлова Татьяна Алексеевна
  • Потехин Вячеслав Вячеславович
RU2472786C1
СПОСОБ ПОЛУЧЕНИЯ N-МОРФОЛИНОЭТИЛМЕТАКРИЛАТА 2019
  • Живодеров Александр Васильевич
  • Лёшина Марина Николаевна
  • Ладилова Надежда Юрьевна
  • Макарова Ирина Юрьевна
  • Корниенко Павел Владимирович
  • Ширшин Константин Викторович
RU2714132C1
Способ получения бутилакрилата 1975
  • Пеньков Евгений Иванович
  • Штефан Владимир Николаевич
  • Паршуткин Юрий Анатольевич
  • Офицеров Станислав Владимирович
  • Коршунов Михаил Алексеевич
  • Мелехов Валентин Михайлович
  • Ерыков Виталий Григорьевич
  • Лазарянц Вадим Эммануилович
SU706397A1
СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛЭТАНОЛАМИНА 2004
  • Михайлова Татьяна Алексеевна
  • Никущенко Наталья Трофимовна
  • Луговской Сергей Анатольевич
  • Нагродский Михаил Иосифович
  • Лаврентьев Иван Анатольевич
RU2268254C1
СПОСОБ ПЕРЕРАБОТКИ ИЗОБУТЕНСОДЕРЖАЩЕЙ УГЛЕВОДОРОДНОЙ СМЕСИ 2005
  • Шпанцева Людмила Васильевна
  • Аксенов Виктор Иванович
  • Калугин Александр Сергеевич
  • Комаров Юрий Андреевич
  • Елагина Альбина Валерьевна
RU2319686C2
СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛОВОГО ЭФИРА 2002
  • Павлов Д.С.
  • Павлов О.С.
  • Телков Ю.К.
RU2256645C2
КОМПЛЕКСНЫЙ СПОСОБ ПРОИЗВОДСТВА ТОПЛИВНОГО ДИМЕТИЛОВОГО ЭФИРА И БЕНЗИНА ИЗ УГЛЕВОДОРОДНЫХ ГАЗОВ 2003
  • Гриценко А.И.
  • Кубиков В.Б.
  • Лоренц В.Я.
  • Петров В.Н.
  • Сливинский Е.В.
RU2266893C2
СПОСОБ ПОЛУЧЕНИЯ ЭТАНОЛАМИНОВ 2009
  • Михайлова Татьяна Алексеевна
  • Никущенко Наталья Трофимовна
  • Нагродский Михаил Иосифович
  • Потехин Вячеслав Вячеславович
  • Луговской Сергей Анатольевич
  • Лаврентьев Иван Анатольевич
RU2412156C1

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛАМИНОЭТИЛАКРИЛАТА

Изобретение относится к улучшенному способу получения аминоакрилатов (диметиламиноэтилакрилата и диметиламиноэтилметакрилата) переэтерификацией метилакрилата или метилметакрилата диметилэтаноламином при повышенной температуре в присутствии Ti-содержащего жидкофазного катализатора. При этом синтез осуществляют в двух последовательных реакторах: первом, работающем без отгонки метанола, до конверсии ДМЭА 30-40% и втором, из которого непрерывно ведется отгонка метанола, до полной конверсии исходного ДМЭА, с рециклом непрореагировавшего акрилата в первый реактор и рециклом ДМЭА во второй реактор. Способ позволяет конструктивно упростить реакторный узел, увеличить удельную производительность при сохранении высокой селективности процесса. 1 ил., 2 табл.

Формула изобретения RU 2 497 802 C1

Способ получения аминоакрилатов (диметиламиноэтилакрилата и диметиламиноэтилметакрилата) переэтерификацией метилакрилата или метилметакрилата диметилэтаноламином при повышенной температуре в присутствии Ti-содержащего жидкофазного катализатора, отличающийся тем, что синтез осуществляют в двух последовательных реакторах: первом, работающем без отгонки метанола, до конверсии ДМЭА 30-40% и втором, из которого непрерывно ведется отгонка метанола, до полной конверсии исходного ДМЭА, с рециклом непрореагировавшего акрилата в первый реактор и рециклом ДМЭА во второй реактор.

Документы, цитированные в отчете о поиске Патент 2013 года RU2497802C1

US 7268251 B1, 11.09.2007
US 6977310 В2, 20.12.2005
УСОВЕРШЕНСТВОВАННЫЙ СПОСОБ НЕПРЕРЫВНОГО ПОЛУЧЕНИЯ АЛКИЛ(МЕТ)АКРИЛАТОВ С МНОГОКРАТНОЙ РЕЦИРКУЛЯЦИЕЙ КАТАЛИЗАТОРА 2003
  • Аккерман Йохен
  • Хилтнер Хорст
  • Зигерт Херман
RU2407733C2
US 20090253930 A1, 08.10.2009
US 7294240 B2, 13.11.2007
ЛЕКАЕ В.М
и др
"Процессы и аппараты химической промышленности"
- М.: Высшая школа, 1984, с.235
БЕСКОВ B.C
и др
"Общая химическая технология и основы промышленной экологии"
- М.: Химия, 1999, с.153-154, с.182, рис.3.2, с.183-184.

RU 2 497 802 C1

Авторы

Александров Вадим Маратович

Демидов Павел Александрович

Лаврентьев Иван Анатольевич

Луговской Сергей Анатольевич

Нагродский Михаил Иосифович

Никущенко Наталья Трофимовна

Михайлова Татьяна Алексеевна

Потехин Вячеслав Вячесловович

Даты

2013-11-10Публикация

2012-04-24Подача