СПОСОБ ПРОКАТКИ МЕТАЛЛИЧЕСКИХ ПОЛОС Российский патент 2013 года по МПК B21B1/34 

Описание патента на изобретение RU2499641C1

Изобретение относится к прокатному производству и может быть использовано на реверсивном одноклетьевом стане кварто 1700 при горячей прокатки полос из сплавов черных и цветных металлов.

Известен способ прокатки металлических полос, включающий их обжатие в валках с приложением к полосе регламентированных заднего и переднего натяжений, согласно которому величину удельного натяжения полосы в межклетевых промежутках определяют исходя из обжатия по предложенной математической зависимости [1].

Известен также способ прокатки металлических полос, включающий их обжатие в валках с приложением к полосе регламентированных переднего и заднего натяжений, по которому удельные натяжения по ширине полосы на входе и выходе клети в каждом продольном сечении устанавливают по предложенным математическим зависимостям [2].

Недостатки известных способов [1] и [2] состоят в том, что они не обеспечивают минимально возможного усилия прокатки, что увеличивает прогиб валков, разнотолщинность металлических полос и энергозатраты на прокатку.

Наиболее близким аналогом к предлагаемому изобретению является способ прокатки стальных полос на 5-клетьевом стане, включающий их обжатие в валках с приложением к полосе переднего и заднего натяжений, по которому натяжение полосы перед третьей клетью устанавливают в 1,01-1,56 раз больше натяжения после этой клети, натяжение полосы перед четвертой клетью - в 1,01-1,85 раз больше натяжения полосы после клети, а натяжение после второй клети - в 1,01-1,40 больше, чем перед этой клетью [3].

Недостаток известного способа состоит в том, что из-за большого усилия прокатки в каждой из клетей увеличивается прогиб валков и их сплющивание, что ведет к повышению разнотолщинности полос и увеличению энергозатрат на прокатку. Кроме того, известный способ не применим для одноклетевых реверсивных станов.

Техническая задача, решаемая изобретением, состоит в снижении усилия прокатки.

Для решения поставленной технической задачи в известном способе горячей прокатки металлических полос на реверсивном одноклетевом стане кварто 1700, включающем их обжатие в валках с приложением к полосе регламентированных переднего и заднего натяжений, согласно изобретению, прокатку ведут с относительным обжатием 8-28% при соотношении коэффициентов переднего и заднего натяжений, равном:

ξ 1 ξ 0 = 1,2 1,4 ,

где ξ 1 = 1 σ 1 σ Т П , ξ 0 = 1 σ 0 σ Т З ;

σ1 и σ0 - удельные переднее и заднее натяжения полосы;

σТЗ и σТП - значения пределов текучести полосы до и после обжатия.

Сущность изобретения поясняется изображенной на фигуре экспериментальной зависимостью относительного значения усилия прокатки P от соотношения коэффициентов ξ1 и ξ0 переднего и заднего натяжений для очага деформации с соотношением его длины ld к средней толщине полосы hср, равном: ld/hср=0,4-12,6 применительно к одноклетевому реверсивному стану кварто.

В процессе экспериментов на Стеккеля 1700 горячей прокатки осуществляли варьирование коэффициентов переднего ξ1 и заднего ξ0 натяжений путем изменения нагрузки электродвигателей моталки и разматывателя. Одновременно фиксировали изменение усилия прокатки P относительно его максимального значения.

Из приведенной экспериментальной зависимости следует, что переднее и заднее натяжения изменяют схему напряженно-деформированного состояния участка полосы в очаге деформации таким образом, что имеет место снижение усилия прокатки. Шаровая часть тензора напряжения уменьшается, а девиаторная, определяющая деформируемость металла, возрастает. Это приводит к снижению усилия и момента прокатки, уменьшению прогиба и сплющивания рабочих валков, сокращению суммарных энергозатрат на реализацию процесса.

Эксперименты показали (см. Фиг.), что в диапазоне ξ 1 ξ 0 = 1,2 1,4 имело место экстремальное снижение усилия прокатки P на 25-28%, что сопровождается уменьшением прогиба и сплющивания рабочих валков, снижением поперечной разнотолщинности прокатываемых полос при общем суммарном сокращении энергозатрат.

При относительных обжатиях менее 8% соотношение коэффициентов переднего и заднего натяжений не оказывает заметного влияния на усилие прокатки. Увеличение относительного обжатия более 28% само по себе существенно повышает усилие прокатки, что ведет к увеличению энергозатрат, разнотолщинности и неплоскостности полос.

При увеличении отношения ξ 1 ξ 0 более 1,4, как и при его уменьшении менее 1,2 снижается девиаторная часть тензора напряжений в очаге деформации, что приводит к увеличению усилия P прокатки.

Примеры реализации способа

Сляб из стали марки 60С2 нагревают до температуры t=1250°C и прокатывают в черновой группе клетей за 7 проходов в полосу сечением 10×1500 мм, которую сматывают в рулон на барабан моталки.

Полученную полосу при температуре t=1000°C в дальнейшем прокатывают на реверсивном одноклетьевом стане кварто 1700.

По справочным данным определяют значение предела текучести прокатываемой стали перед очагом деформации: σТЗ=85 кг/мм2. После обжатия в валках температура полосы снижается и ее предел текучести возрастет до величины σТП=90 кг/мм2.

Передний конец полосы пропускают через валки реверсивной клети и заправляют во вторую моталку. С помощью электродвигателей моталок устанавливают удельное заднее натяжение полосы σ0=74 кг/мм2, а также удельное переднее натяжение σ1=75 кг/мм2. При этом коэффициенты заднего и переднего натяжений равны:

ξ 1 = 1 σ 1 σ Т П = 1 75 90 = 0,167 ; ξ 0 = 1 σ 1 σ Т З = 1 74 85 = 0,129 .

Отношение коэффициентов переднего и заднего натяжений составляет:

ξ 1 ξ 0 = 0,167 0,128 = 1,29 .

Затем осуществляют прокатку полосы в валках со скоростью 5 м/с с относительным обжатием ε=15% (до толщины 8,5 мм) и с приложением к полосе заранее установленных переднего и заднего натяжений.

Благодаря тому, что отношение коэффициентов переднего и заднего натяжений в процессе прокатки составляет ξ 1 ξ 0 = 1,29 , достигается изменение напряженного состояния металла в очаге деформации: девиаторная часть тензора напряжений возрастает, а шаровая уменьшается. За счет этого обеспечивается снижение усилия прокатки до минимального значения (см. Фиг.), составляющего при указанных условиях Р=1620 тс.

Снижение усилия прокатки в свою очередь обеспечивает сокращение энергозатрат на прокатку (суммарной потребляемой мощности N), уменьшает разнотолщинность ΔН и неплоскостность ΔS прокатанных полос.

В таблице приведены варианты реализации предложенного способа и показатели их эффективности.

Из данных, представленных в таблице, следует, что при реализации предложенного способа (варианты №2-4) достигается снижение усилия прокатки. Следствием этого является снижение энергозатрат, уменьшение разнотолщинности и неплоскостности полос.

В случаях запредельных значений соотношения коэффициентов переднего и заднего натяжений (варианты №1 и №5) усилие прокатки возрастает, увеличиваются энергозатраты на прокатку, разнотолщинность и неплоскостность полос. Более высокие усилие прокатки и энергозатраты необходимы в случае реализации ближайшего аналога [3] - вариант №6.

Таблица. Параметры прокатки полосы из стали марки 60С2 на реверсивном стане кварто 1700 по схеме: 10×1500 мм → 8,5×1500 мм № п/п ε, % ld/hcp ξ 1 ξ 0 P, тс N, кВт ΔH, мм ΔS, мм/м 1. 7 0,3 1,10 1790 847 ±0,8 3,2 2. 8 0,4 1,20 1630 790 ±0,2 1,1 3. 15 6,5 1,29 1620 780 ±0,1 1,0 4. 28 12,6 1,40 1635 785 ±0,2 1,2 5. 30 15,3 1,45 1795 850 ±0,8 3,0 6. 20 14,4 не регл. 1810 990 ±0,9 3,5

Технико-экономические преимущества предложенного способа заключаются в том, что обжатие полосы в валках на 8-28% в очаге деформации с соотношением геометрических параметров длины очага деформации к средней в нем толщине полосы ld/hср=0,4-12,6, с приложением к полосе переднего и заднего натяжений, с соотношением коэффициентов переднего и заднего натяжений, равным ξ 1 ξ 0 = 1,2 1,4 , обеспечивает снижение усилия прокатки за счет целенаправленного воздействия на схему напряженно-деформированного металла в очаге деформации. Это способствует снижению суммарных энергозатрат на прокатку, повышению точности и плоскостности прокатываемых полос. Реализация предложенного способа обеспечивает повышение рентабельности производства металлических полос на 12-15%.

Литературные источники, использованные при составлении описания изобретения:

1. Патент РФ №2239500, МПК B21B 1/28, 2004.

2. Патент РФ №2217249, МПК B21B 1/28, 2003.

3. Патент РФ №2287383, МПК B21B 1/28, B21B 37/48, 2006.

Похожие патенты RU2499641C1

название год авторы номер документа
СПОСОБ ПРОКАТКИ МЕТАЛЛИЧЕСКИХ ПОЛОС 2012
  • Кохан Лев Соломонович
  • Алдунин Анатолий Васильевич
  • Вольшонок Игорь Зиновьевич
  • Трайно Александр Иванович
  • Русаков Андрей Дмитриевич
RU2486975C1
СПОСОБ ХОЛОДНОЙ ПРОКАТКИ ПОЛОС 2013
  • Полухин Владимир Петрович
  • Трайно Александр Иванович
RU2534696C1
СПОСОБ НЕПРЕРЫВНОЙ ХОЛОДНОЙ ПРОКАТКИ ПОЛОСЫ С НАТЯЖЕНИЕМ 2009
  • Павлов Сергей Игоревич
  • Кузнецов Виктор Валентинович
  • Гарбер Эдуард Александрович
  • Тимофеева Марина Анатольевна
RU2409432C1
СПОСОБ ПРОДОЛЬНОЙ ПРОКАТКИ ПОЛОС 2011
  • Трайно Александр Иванович
  • Гарбер Эдуард Александрович
  • Дегтев Сергей Сергеевич
  • Русаков Андрей Дмитриевич
RU2467813C1
СПОСОБ ПРОКАТКИ МЕТАЛЛИЧЕСКОЙ ПОЛОСЫ 2011
  • Трайно Александр Иванович
  • Гарбер Эдуард Александрович
  • Русаков Андрей Дмитриевич
  • Дегтев Сергей Сергеевич
RU2470722C1
СПОСОБ ХОЛОДНОЙ ПРОКАТКИ СТАЛЬНЫХ ПОЛОС 2012
  • Вольшонок Игорь Зиновьевич
  • Трайно Александр Иванович
  • Русаков Андрей Дмитриевич
RU2499639C1
Способ управления процессом холодной прокатки полосы на реверсивном стане 1988
  • Бычков Николай Петрович
  • Зисельман Виталий Львович
  • Муханов Евгений Владимирович
  • Передерий Юрий Иванович
  • Саруль Сергей Генрихович
SU1576216A1
СПОСОБ ХОЛОДНОЙ ПРОКАТКИ СТАЛЬНЫХ ПОЛОС 2011
  • Трайно Александр Иванович
RU2463115C1
СПОСОБ ДРЕССИРОВКИ СТАЛЬНЫХ ОТОЖЖЕННЫХ ПОЛОС 2012
  • Вольшонок Игорь Зиновьевич
  • Трайно Александр Иванович
  • Гарбер Эдуард Александрович
  • Русаков Андрей Дмитриевич
  • Шалаевский Дмитрий Леонидович
RU2492947C1
СПОСОБ ДРЕССИРОВКИ ОТОЖЖЕННОЙ СТАЛЬНОЙ ПОЛОСЫ 2011
  • Трайно Александр Иванович
RU2464115C1

Иллюстрации к изобретению RU 2 499 641 C1

Реферат патента 2013 года СПОСОБ ПРОКАТКИ МЕТАЛЛИЧЕСКИХ ПОЛОС

Изобретение предназначено для снижения усилия прокатки на реверсивных станах горячей прокатки полос из сплавов черных и цветных металлов. Способ включает обжатие полосы в валках с приложением к полосе регламентированных переднего и заднего натяжений. Снижение усилия и момента прокатки, уменьшение прогиба и сплющивания валков обеспечивается за счет того, что прокатку ведут с относительным обжатием 8-28% при регламентированном соотношении коэффициентов переднего и заднего натяжений, зависящем от предела текучести материала до и после обжатия. 1 ил., 1 табл., 6 пр.

Формула изобретения RU 2 499 641 C1

Способ горячей прокатки металлических полос на реверсивном одноклетьевом стане кварто 1700, включающий их обжатие в валках с приложением к полосе регламентированных переднего и заднего натяжений, отличающийся тем, что прокатку ведут с относительным обжатием 8-28% при соотношении коэффициентов переднего и заднего натяжений, равном
ξ 1 ξ 0 = 1,2 1,4,
где ξ 1 = 1 σ 1 σ Т П ; ξ 0 = 1 σ 0 σ Т З ;
σ1 и σ0 - удельные переднее и заднее натяжения полосы;
σТЗ и σТП - значения пределов текучести полосы до и после обжатия.

Документы, цитированные в отчете о поиске Патент 2013 года RU2499641C1

СПОСОБ ХОЛОДНОЙ ПРОКАТКИ ПОЛОС 2004
  • Ветер Владимир Владимирович
  • Горбенко Валерий Владимирович
  • Белкин Геннадий Анатольевич
RU2287383C2
СПОСОБ ХОЛОДНОЙ ПРОКАТКИ ПОЛОС В МНОГОКЛЕТЬЕВОМ СТАНЕ 2002
  • Приходько Игорь Юрьевич
  • Настич В.П.
  • Чернов П.П.
  • Акишин Владимир Викторович
  • Пименов В.А.
  • Парсенюк Евгений Александрович
  • Сафьян Александр Матвеевич
  • Долматов А.П.
  • Рубанов В.П.
RU2225272C2
Способ прокатки полосы 1990
  • Колпаков Сергей Серафимович
  • Евсеев Олег Михайлович
  • Поляков Василий Васильевич
  • Скороходов Владимир Николаевич
SU1771839A1
Способ прокатки тонких и тончайших полос 1984
  • Абдулов Юрий Павлович
  • Концевой Юрий Васильевич
  • Рейзис Лев Зиновьевич
SU1194519A1
US 5687595 A, 18.11.1997.

RU 2 499 641 C1

Авторы

Вольшонок Игорь Зиновьевич

Алдунин Анатолий Васильевич

Кохан Лев Соломонович

Трайно Александр Иванович

Русаков Андрей Дмитриевич

Даты

2013-11-27Публикация

2012-04-19Подача