СПОСОБ ПОЛУЧЕНИЯ ТРИХЛОРСИЛАНА И ТЕТРАХЛОРСИЛАНА Российский патент 2013 года по МПК C07F7/12 C01B33/107 

Описание патента на изобретение RU2499801C2

Данная заявка претендует на приоритет предварительной заявки на патент США №61/119391, поданной 3 декабря 2008 г. Предварительная заявка на патент США №61/119391 включена в данное описание посредством ссылки.

Утверждение, касающееся финансируемых государством научных исследований

Отсутствует.

Предпосылки изобретения

Область техники

Настоящее изобретение относится к способу крекинга высококипящих полимеров для увеличения выхода и минимизации отходов в процессе получения трихлорсилана (HSiCl3). Полимеры включают в себя тетрахлордисилоксан (H2Si2OCl4), пентахлордисилоксан (HSi2OCl5), гексахлордисилоксан (Si2OCl6) и гексахлордисилан (Si2Cl6). В процессе крекинга получают дополнительное количество HSiCl3 и/или тетрахлорсилана (SiCl4), полезных в способе получения поликристаллического кремния.

Решаемая задача

SiCl4 является побочным продуктом, получаемым при осаждении кремния на субстрате в реакторе химического осаждения из паровой фазы (CVD, от англ. Chemical Vapor Deposition), в котором используется поток сырьевого газа, содержащего HSiCl3 и водород (H2). Желательно превращать SiCl4 обратно в HSiCl3, используемый в потоке сырьевого газа. Один из способов превращения SiCl4 обратно в HSiCl3 включает подачу H2 и SiCl4 в реактор с псевдоожиженным слоем (FBR, от англ. Fluidized Bed Reactor), содержащий частицы кремния. FBR работает при высоком давлении и температуре, при этом происходит следующая реакция.

3SiCl4+2H2+Si↔4HSiCl3

Частичная конверсия H2 и SiCl4 в HSiCl3 достигается вследствие равновесных ограничений. H2 отделяют от хлорсиланов и направляют обратно в исходное сырье (рециркулируют). Аналогично, непрореагировавший SiCl4 отгоняют из продукта HSiCl3 и рециркулируют. Продукт HSiCl3 может быть дополнительно подвергнут дистилляции для удаления примесей.

В FBR наряду с целевым продуктом HSiCl3 образуется остаток. Остаток, который является более тяжелым, чем SiCl4, собирается в нижней части дистилляционного аппарата. Остаток обычно содержит полихлорсиланы и/или полихлорсилоксаны, примерами которых являются частично гидрогенизированные соединения, включая тетрахлордисилоксан (H2Si2OCl4) и пентахлордисилоксан (HSiO2OCl5); и другие высококипящие соединения, включая гексахлордисилоксан (Si2OCl6) и гексахлордисилан (Si2Cl6). Остаток также содержит твердые частицы кремния, которые необходимо периодически удалять. Остаток периодически откачивают и удаляют.

Был предложен один подход для превращения полихлорсиланов и полихлорсилоксанов, в котором эти соединения подают обратно в FBR для получения HSiCl3. Однако считают, что данный способ не может использоваться в промышленности из-за ограничений, вызванных кинетикой реакции при характерных температурах реактора, если не выполняется множество циклов рециркуляции. Этот способ также осложняется наложением рециркуляционного потока на гидродинамику в реакторе и на саму реакцию образования целевого HSiCl3.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Способ крекинга полихлорсиланов и/или полихлорсилоксанов включает: рециркуляцию чистой смеси, содержащей полихлорсиланы и/или полихлорсилоксаны, в дистилляционный аппарат, в результате чего получают трихлорсилан, тетрахлорсилан или их комбинации.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

На Фиг.1 представлена блок-схема схема, демонстрирующая способ по настоящему изобретению.

Условные обозначения 101 Трубопровод для подачи SiCl4 111 Отстойник 102 Трубопровод для подачи H2 113 Трубопровод для подачи для дистилляции 103 Реактор с псевдоожиженным слоем 115 Трубопровод для удаления продукта верха колонны 105 Трубопровод для подачи частиц кремния 117 Трубопровод для удаления остатка 107 Трубопровод для неочищенного

продукта 119 Аппарат для удаления твердых частиц 108 Аппарат для удаления пыли 109 Трубопровод для рециклинга частиц кремния 121 Трубопровод для удаления твердых частиц 110 Дистилляционная колонна 123 Трубопровод для чистой смеси

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В данной заявке предложен способ крекинга полихлорсиланов и/или полихлорсилоксанов. Способ может включать:

а. получение смеси, содержащей полихлорсилан и/или полихлорсилоксан;

возможно б. удаление твердых частиц из смеси с получением чистой смеси;

в. рециркуляцию чистой смеси в дистилляционный аппарат, в результате чего получают трихлорсилан, тетрахлорсилан или их комбинации.

На Фиг.1 показана блок-схема иллюстративного способа получения HSiCl3. SiCl4 подают через трубопровод 101, и H2 подают через трубопровод 102, в реактор с псевдоожиженным слоем (FBR) 103. Частицы кремния подают в FBR через трубопровод 105, и они образуют псевдоожиженный слой в FBR 103. Поток неочищенного продукта, содержащий HSiCl3, SiCl4, твердые частицы кремния и H2, отводят из верхней части FBR 103 через трубопровод 107. Твердые частицы кремния могут быть удалены с помощью аппарата 108 для удаления пыли, такого как циклон, и возвращены в FBR 103 через трубопровод 109. Полученную выходящую смесь подают отстойник 111 дистилляционной колонны 110 через трубопровод 113.

Отстойник 111 дистилляционной колонны 110 может содержать катализатор, который облегчает крекинг полихлорсилоксановых и полихлорсилановых соединений. Некоторые катализаторы могут по существу образовываться в отстойнике 111 дистилляционной колонны 110 из примесей, таких как олово, титан или алюминий. Примеры таких катализаторов включают, но не ограничиваются этим, дихлорид титана, трихлорид титана, тетрахлорид титана, тетрахлорид олова, дихлорид олова, хлорид железа, AlCl3 и их комбинацию. Количество такого катализатора зависит от различных факторов, включающих то, насколько часто остаток удаляют из дистилляционного аппарата 110, и уровень катализатора, присутствующего в выходящей смеси из FBR 103. Альтернативно, катализатор может быть добавлен в отстойник 111. Могут быть использованы металлические катализаторы платиновой группы, такие как платина, палладий, осмий, иридий, или их гетерогенные соединения. Металлические катализаторы платиновой группы возможно могут быть осаждены на субстратах, таких как углерод или оксид алюминия. Количество катализатора может варьироваться в зависимости от типа катализатора и факторов, описанных выше, однако количество может варьироваться от 0 до 20%, альтернативно, от 0 до 10% остатка. Специалист в данной области техники знает, что различные катализаторы обладают различными каталитическими активностями, и сможет выбрать подходящий катализатор и его количество, основываясь на условиях процесса в дистилляционном аппарате 110 и отстойнике 111.

Смесь, включающую SiCl4, HSiCl3 и H2, удаляют из верхней части дистилляционной колонны 110 через трубопровод 115. SiCl4 и H2 могут быть извлечены и поданы обратно в FBR 103, как описано выше. HSiCl3 возможно может быть использован в качестве сырьевого газа для реактора CDV (не показано) для производства поликристаллического кремния.

Вместе с целевым продуктом HSiCl3 в FBR 103 образуется остаток. Остаток, который тяжелее SiCl4, собирается в отстойнике 111. Остаток периодически удаляют через трубопровод 117. Остаток обычно содержит полихлорсилан и/или полихлорсилоксан. Примерами таких полихлорсиланов и полихлорсилоксанов являются частично гидрогенизованные соединения, включая тетрахлордисилоксан (H2SiO2OCl4) и пентахлордисилоксан (HSi2OCl5); и другие высококипящие соединения, включая гексахлордисилоксан (SiO2OCl6) и гексахлордисилан (Si2Cl6). Точное количество каждого из соединений полихлорсилана и полихлорсилоксана в остатке может варьироваться в зависимости от химии процесса и условий, в которых образуется остаток. Однако остаток может содержать от 0 до 15% H2Si2OCl4, от 5% до 35% HSi2OCl5, от 15% до 25% Si2OCl6 и от 35% до 75% Si2Cl6, из расчета на объединенную массу полихлорсиланов и полихлорсилоксанов в остатке. Остаток также может содержать твердые вещества, который нерастворимы в соединениях, описанных выше. Например, твердые вещества могут представлять собой полихлорсилоксаны, имеющие 4 или более атомов кремния, и полихлорсиланы более высого порядка. Твердые вещества также могут содержать твердые частицы кремния, которые возможно могут быть регенерированы, как описано ниже, и возможно рециркулированы в FBR 103.

Остаток может подаваться в аппарат для удаления твердых частиц 119. Твердые вещества могут быть удалены через трубопровод 121. Чистая смесь (т.е. смесь, содержащая тетрахлордисилоксан, пентахлордисилоксан, гексахлордисилоксан и гексахлордисилан, где твердые частицы удалены) может подаватьсяа через трубопровод 123 обратно в отстойник 111.

Фиг.1 предназначена для иллюстрации изобретения для среднего специалиста в данной области техники и не должна интерпретироваться как ограничивающая объем изобретения, изложенного в формуле изобретения. Средний специалист в данной области техники может осуществить модификации изобретения, проиллюстрированного на Фиг.1, которые по-прежнему способствуют осуществлению данного изобретения. Например, специалист в данной области техники знает, что циклон 108 не является обязательным и что один или более трубопроводов для подачи 101, 102 и 105 возможно могут быть объединены перед вхождением в FBR 103. Специалист в данной области техники знает, что дистилляционная колонна 110 может иметь конфигурацию, отличную от показанной на Фиг.1, например, вместо отстойника 111 может быть использован отдельный ребойлер, в который подают газ из трубопровода 113. Тогда остаток будет накапливаться в ребойлере. Кроме того, может быть использован альтернативный способ получения HSiCl3, например, альтернативный FBR 103, который продуцирует HSiCl3 из HCl и порошкового кремния.

Реакции крекинга соединений полихлорсилана и/или полихлорсилоксана в чистой смеси могут давать мономерные соединения хлорсилана (HSiCl3 и SiCl4) и полимеры силана и силоксана более высокого порядка с каждой последующей реакцией соединений в чистой смеси. Силоксановые полимеры становятся достаточно большими с образованием твердых частиц при длине приблизительно 4 звена. В условиях дистилляционного аппарата полихлорсиланы аналогично подвергаются реакциям крекинга. Частично гидрогенизированные соединения, описанные выше, находятся в равновесии с HSiCl3 и другими (не гидрогенизированными) соединениями, описанными выше, находятся в равновесии с SiCl4 согласно следующим реакциям:

HnSiO2OCl6-n↔Hn-1Si3O2Cl8-n+HSiCl3, где подстрочный индекс n означает число атомов водорода, например, 1 или 2,

Si2OCl6↔Si3O2Cl8+SiCl4.

Когда полихлорсилоксаны достигают степени полимеризации 4 или более, может образовываться твердое вещество, и реакция может стать необратимой, как проиллюстрировано ниже:

HnSi3O2Cl8-n→Hn-1Si4O3Cl10-n (твердое вещество) + HSiCl3, и

Si3O2Cl8→Si4O3C10 (твердое вещество) + SiCl4.

Основываясь на кинетических данных, все вышеуказанные реакции протекают с различными скоростями в отстойнике 111 с возможностью достижения равновесий за время пребывания соединений в отстойнике 111 при рециркулировании чистой смеси. Отстойник 111 может функционировать при температуре от 130°C до 280°C, альтернативно, от 180°C до 240°C, и альтернативно, от 200°C до 220°C, в течение времени пребывания, варьирующемся от 10 суток до 1 часа, при давлении, варьирующемся от 25 бар (2,5 МПа) до 40 бар (4 МПа). Специалист в данной области техники знает, что выбранное время пребывания зависит от различных факторов, включающих температуру и присутствие или отсутствие катализатора. Давление может быть выбрано на основании практических ограничений. Повышенное давление будет увеличивать температуры кипения в дистилляционном аппарате. Диапазон давлений позволяет реакции протекать при подходящих температурах и, следовательно, с достаточной скоростью.

Промышленная применимость

Способ, описанный в данной заявке, приводит к уменьшению отходов и увеличению выхода хлорсилановых мономеров (HSiCl3 и SiCl4), полезных в производстве поликристаллического кремния. Полихлорсиланы и полихлорсилоксаны, которые в противном случае были бы удалены в виде отходов, подвергаются крекингу с получением полезных HSiCl3 и SiCl4.

Похожие патенты RU2499801C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ В РЕАКТОРЕ С ПСЕВДООЖИЖЕННЫМ СЛОЕМ С ИСПОЛЬЗОВАНИЕМ ТЕТРАХЛОРСИЛАНА ДЛЯ СНИЖЕНИЯ ОСАЖДЕНИЯ НА СТЕНКАХ РЕАКТОРА 2009
  • Молнар Майкл
RU2518613C2
УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА ТРИХЛОРСИЛАНА И СПОСОБ ДЛЯ ПРОИЗВОДСТВА ТРИХЛОРСИЛАНА 2009
  • Исии Тосиюки
  • Комаи Еидзи
  • Сатох Харуми
RU2496715C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСШИХ СИЛАНОВ 2007
  • Ланг Юрген Эрвин
  • Рауледер Хартвиг
  • Мю Эккехард
RU2470859C2
ПОЛУЧЕНИЕ КРЕМНИЯ ПОСРЕДСТВОМ РЕАКТОРА С ПСЕВДООЖИЖЕННЫМ СЛОЕМ, ВСТРОЕННОГО В СИМЕНС-ПРОЦЕСС 2007
  • Арвидсон Арвид Нил
  • Молнар Майкл
RU2428377C2
СПОСОБ ПОЛУЧЕНИЯ ТРИХЛОРСИЛАНА КАТАЛИТИЧЕСКИМ ГИДРОГАЛОГЕНИРОВАНИЕМ ТЕТРАХЛОРИДА КРЕМНИЯ 2005
  • Бомхаммель Клаус
  • Кетер Свен
  • Ревер Герхард
  • Ревер Инго
  • Монкевич Ярослав
  • Хене Ханс-Юрген
RU2371388C2
КАТАЛИЗАТОР И СПОСОБ ДИСМУТАЦИИ СОДЕРЖАЩИХ ВОДОРОД ГАЛОГЕНСИЛАНОВ 2008
  • Рауледер Хартвиг
  • Мю Эккехард
  • Шорк Райнхольд
RU2492924C9
ГАЛОГЕНИРОВАННЫЙ ПОЛИСИЛАН И ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Баух Кристиан
  • Дельчев Румен
  • Липпольд Герд
  • Мохссени-Ала Сейед-Джавад
  • Аунер Норберт
RU2502555C2
УСТРОЙСТВО И СПОСОБ УМЕНЬШЕНИЯ СОДЕРЖАНИЯ ЭЛЕМЕНТОВ ТИПА БОРА В ГАЛОГЕНСИЛАНАХ 2008
  • Мю Эккехард
  • Рауледер Хартвиг
  • Шорк Райнхольд
RU2502669C2
СПОСОБ УМЕНЬШЕНИЯ СОДЕРЖАНИЯ ЭЛЕМЕНТОВ ТИПА БОРА В ГАЛОГЕНСИЛАНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Мю Эккехард
  • Рауледер Хартвиг
  • Шорк Райнхольд
RU2504515C2
СПОСОБ И СИСТЕМА ДЛЯ ПОЛУЧЕНИЯ МОНОСИЛАНА 2010
  • Петрик Адольф
  • Шмид Кристиан
  • Хан Йохем
RU2551493C2

Иллюстрации к изобретению RU 2 499 801 C2

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ ТРИХЛОРСИЛАНА И ТЕТРАХЛОРСИЛАНА

Изобретение относится к способу крекинга высококипящих полимеров для увеличения выхода и минимизации отходов в процессе получения трихлорсилана. Предложен способ крекинга полихлорсилана и/или полихлорсилоксана, включающий стадии а) получения смеси, содержащей полихлорсилан и/или полихлорсилоксан; б) удаления твердых частиц из этой смеси с получением чистой смеси; и в) рециркуляции полученной чистой смеси в дистилляционный аппарат, и крекинг полихлорсилана и/или полихлорсилоксана в дистилляционном аппарате с получением трихлорсилана, тетрахлорсилана или их комбинации. Технический результат - уменьшение отходов и увеличение выхода хлорсилановых мономеров в процессе получения трихлорсилана. 12 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 499 801 C2

1. Способ крекинга полихлорсилана и/или полихлорсилоксана с получением трихлорсилана, тетрахлорсилана или их комбинации, включающий:
а) получение смеси, содержащей полихлорсилан и/или полихлорсилоксан;
б) удаление твердых частиц из этой смеси с получением чистой смеси; и
в) рециркуляцию полученной чистой смеси, содержащей полихлорсилан и/или полихлорсилоксан, в дистилляционный аппарат, и крекинг полихлорсилана и/или полихлорсилоксана в дистилляционном аппарате с получением трихлорсилана, тетрахлорсилана или их комбинации.

2. Способ по п.1, где чистую смесь рециркулируют в отстойник дистилляционного аппарата.

3. Способ по п.1, где чистую смесь рециркулируют в ребойлер дистилляционного аппарата.

4. Способ по п.1, в котором твердые вещества рециркулируют в реактор с псевдоожиженным слоем для получения трихлорсилана.

5. Способ по п.1, где полихлорсилан выбран из группы, состоящей из гексахлордисилана, пентахлордисилана, тетрахлордисилана и их комбинации.

6. Способ по п.1, где полихлорсилоксан выбран из группы, состоящей из тетрахлордисилоксана, пентахлордисилоксана, гексахлордисилоксана и их комбинации.

7. Способ по п.1, где дистилляционный аппарат работает при температуре от 130°C до 280°C, когда время пребывания составляет от 10 суток до 1 ч при давлении от 25 бар (2,5 МПа) до 40 бар (4 МПа).

8. Способ по п.1, дополнительно включающий: г) подачу стока из реактора с псевдоожиженным слоем, производящего трихлорсилан, в дистилляционный аппарат перед стадией а).

9. Способ по п.8, где сток представляет собой поток неочищенного продукта, содержащий тетрахлорсилан, трихлорсилан, твердые частицы кремния и водород.

10. Способ по п.8, дополнительно включающий: д) удаление твердых частиц кремния из стока перед стадией г).

11. Способ по п.3, где ребойлер содержит катализатор.

12. Способ по п.11, где катализатор выбран из группы, состоящей из хлорида титана, олова, алюминия или их комбинации.

13. Способ по п.11, где катализатор содержит металл платиновой группы.

Документы, цитированные в отчете о поиске Патент 2013 года RU2499801C2

WO 2007101789 A1, 13.09.2007
СПОСОБ ПОЛУЧЕНИЯ ТРИМЕТИЛХЛОРСИЛАНА 1995
  • Матвеев Л.Г.
  • Ефимов Ю.Т.
  • Максимова Г.В.
  • Степанова А.Н.
  • Симаков В.И.
  • Размахов С.Е.
  • Желтухин И.А.
RU2099343C1

RU 2 499 801 C2

Авторы

Хардер Патрик Джеймс

Целепис Артур Джеймс

Даты

2013-11-27Публикация

2009-11-17Подача