Изобретение относится к области органической и физической химии, а именно к использованию новых тиофенсодержащих кремнийорганических соединений, образующих на поверхности оксидов металлов, таких как алюминий, ниобий и тантал, самособирающиеся монослои, которые на следующей стадии являются основой роста политиофеновой цепочки при химической полимеризации в присутствии тозилата железа. Изобретение также относится к производству изделий электронной техники, конкретно - к производству оксидных конденсаторов с твердым электролитом на основе полимера.
В последние годы оцифровка электронного оборудования сопровождается ростом спроса на конденсаторы небольшого размера с уменьшенным внутренним эквивалентным последовательным сопротивлением (ЭПС), или equivalent series resictance (ESR), в области высоких частот. Одними из первых органических материалов, использованных в производстве конденсаторов, были соли 7,7,8,8-тетрацианохинодиметана (TCNQ), растворы которых использовались для пропитки алюминиевых конденсаторов с сепаратором между слоями фольги или изготовленных из прессованных порошков танталовых анодов.
Широко известен также метод формирования проводящей полимерной пленки на поверхности оксидированных алюминия, ниобия и тантала, который может осуществляться электрохимической полимеризацией или химической полимеризацией соответствующих мономеров. В последние годы в большинстве патентов описано использование полианилина (PANI), полипиррола (Ppyrr) и бисэтилендиокситиофеиа (EDOT). Окисление последнего тозилатом железа в различных спиртовых растворах - этанол, бутанол - применяется наиболее широко. Важным моментом для образования устойчивых пленок является введение различных добавок - силанов, поверхностно-активных веществ, стабилизаторов.
В качестве структурного аналога предлагаемых соединений взят 3-триалкоксисилилпропилиминотиофеиов, описанный в патенте US 6729694, представляющий собой аминопропилтриалкилоксисилаи, который образует на поверхности оксидов алюминия, ниобия или тантала пленки, значительно снижающие ЭПС, токи утечки и повышающие надежность полученных конденсаторов.
Недостаток аналога - соединение химически реагирует с поверхностью окисленных алюминия, ниобия или тантала, однако в дальнейшем процессе полимеризации с молекулами EDOT не участвует.
Известен также структурный аналог 3-триалкоксисилилпропилиминотиофенов, описанный в патенте US 6920036, кл. H01G 9/02, H01G 5/013, H01G 9/04, опубл. 15.07.2005 г., представляющий собой аминофенилпропилтриалкилоксисилан, который образует на поверхности оксидов алюминия, ниобия или тантала пленки, значительно снижающие ЭПС, токи утечки и повышающие надежность полученных конденсаторов.
Известен также структурный аналог 3-триалкоксисилилпропилимииотиофеиов, описанный в патенте US 6072694, и в заявке EP 2309524, представляющий собой (3-глицидилоксипропил)триметоксисилан, который образует на поверхности оксидов алюминия, ниобия или тантала пленки, значительно снижающие ЭПС, токи утечки и повышающие надежность полученных конденсаторов.
Недостаток этого аналога тот же - соединение не участвует в дальнейшем процессе полимеризации.
Известен способ, описанный в патенте US 4009424, кл. H01G 9/02, H01G 9/032, H01G 9/04, B01J 17/00, H01G 9/00, опубл. 22.02.1977 г., согласно которому для пропитки конденсаторных элементов (секций) танталовых конденсаторов с анодами, изготовленными из прессованного порошка вентильного металла, например тантала, использовались растворы солей 7,7,8,8-тетрацианохинодиметана (TCNQ).
Недостаток способа - твердый электролит на основе полупроводникового комплекса органической соли TCNQ имеет не самую высокую удельную проводимость, что отражается на электрических параметрах конденсатора.
Известен способ, описанный в патенте JP 05817609, кл. H01G 9/02, H01G 5/013, H01G 9/04, опубл. 02.1983, согласно которому, для пропитки конденсаторных элементов (секций) алюминиевых конденсаторов с сепаратором между слоями фольги, использовались растворы солей 7,7,8,8-тетрацианохинодиметана (TCNQ).
Недостаток способа - тот же.
Задачей создания изобретения является синтез Триалкоксисиланов, например 3,4-этилеидиокси 2-(3-триэтоксисилилпропилимино)тиофера. Предлагаемые соединения за счет введения тиофеновых колец в триалкоксисиланы после реакции с поверхностью оксидированного металла становятся инициаторами роста полимерной цепи, которая является следующей стадией процесса образования полимерного твердого электролита в качестве катодной обкладки конденсатора. Поставленная задача решается с помощью Триалкоксисиланов общей формулы I
,
где R1 -Si(OAlk)3, R2=R3=H
R2=R3=--OCH2CH2O-, R1= --Si(OAlk)3
R2=R3=--OCH2CH2O-, R1=-CH=N-CH2CH2CH2Si(OAlk)3,
которые используются в качестве кремнийсодержащих добавок для образования монослоя на поверхности танталового анода из спрессованного порошка тантала.
Ниже на схеме приведена реакция полимеризации с участием монослоя тиофенсодержащего силана.
где 1) [R]n n=0, или [CH2]n n=3. 2) R1=H или -OCH2C2O-
Пример 1. Синтеза 3,4-этилендиокси 2-(3-триэтоксисилилпропилимино)тиофена
b) В затемненном пластиковом сосуде смешивали 3-аминопропилтриэтоксисилан (0.19 г, 0.2 мл, 0.0008 моль) и 3,4-этилендиокситиофенкарбальдегид (0.13 г, 0.0007 моль), оставили на 2 недели. Контролируя процесс с помощью тонкослойной хроматографии (ТСХ), получили продукт в виде желто-коричневого маслообразного вещества, не твердеющего при длительном стоянии).
1H ЯМР (CDCl3, Mercury-300, δ, м.д., J, Гц): 0.59 т (2H, CH2Si), 1.19 т (3Н, СН3), 1.70 м (2Н, СН2), 3.46 т (2Н, -NCH2), 3.77 к (6Н, CH2), 4,17 т (4Н, ОСН2СН2О), 6.30 с (1Н, Th), 8.21 с (1H, СН)
Задачей создания изобретения является разработка нового способа получения катодной обкладки из полимерного электролита на основе полиэтилендиокситиофена с силановым подслоем.
Поставленная задача решается с помощью признаков указанных в п.2 формулы изобретения общих с прототипом, таких как способ получения катодной обкладки из полимерного электролита, который заключается в нанесении 8 слоев полимеризующегося соединения на основе полиэтилендиокситиофена на секции из оксидированных объемно-пористых анодов из вентильных металлов и через каждые 4 нанесенных слоя тренировки-подформовки с последующей промывкой секций в деионизованной воде, и отличительных, существенных признаков таких как на секции предварительно наносят триалкоксисилан общей формулы по п.1 путем пропитки секций 5%-ным раствором, например, триэтокси-2-тиенилсилана в этиловом спирте в течение 5 минут при температуре 25±5°C с последующей сушкой в 2 этапа: при комнатной температуре в течение 15 минут и в сушильном шкафу при температуре 110±5°C в течение 15-20 минут.
Способ содержит следующие технологические этапы:
1-й. Нанесение силана на секции (здесь - оксидированные объемно-пористые аноды из вентильного металла) путем пропитки секций 5%-ным раствором триэтокси-2-тиенилсилана в этиловом спирте в течение 5-10 минут при температуре 25±5°C с последующей сушкой в 2 этапа: при комнатной температуре в течение 15-45 минут и в сушильном шкафу при температуре 110±5°C в течение 15-25 минут.
2-й. Нанесение 8 слоев полимерного электролита на основе полиэтилендиокситиофена (PEDOT), где нанесение каждых двух слоев включает в себя: пропитку секций с нанесенным силаном, предварительно просушенных при температуре 105±5°C в течение 20-30 минут и охлажденных до комнатной температуры; погружение медленное, в течение 2 минут, секций в полимеризующийся раствор (состоящий из мономера, окислителя и растворителя), при нормальных условиях с последующей просушкой в сушильном шкафу при температуре 25±5ºС и влажности 50-80% в течение 40-60 минут; повторную пропитку анодов в полимеризующемся растворе, сушку пропитанных секций в сушильном шкафу сначала при температуре 25±5°С и влажности 50-80% в течение 40 минут, затем - при температуре 70±5°С в течение 20 мим, затем - при температуре 105±5°С в течение 10-20 мин. с последующим охлаждением до комнатной температуры; 2-кратную промывку в свежеприготовленном 2%-ом водном растворе п-толуолсульфоновой кислоты при температуре 60±5°С в течение 20-40 мин. с последующей промывкой в проточной деиоиизированной воде при температуре 70-80°С в течение 30-40 мин. и оследующей сушкой в сушильном шкафу при температуре 110±5°С в течение 30-60 мин.
3-й. После четвертого и восьмого полимерных слоев проводится тренировка-подформовка секций в 1%-ном водном растворе п-толуолсульфоиовой кислоты, которая включает в себя выдерживание секций в этом растворе в течение 5 минут, подачу на ячейку с секциями начального тренировочного напряжения, равного 30% от номинального формовочного напряжения, которое дискретно повышают со скоростью 10% от номинального формовочного напряжения за 3 минуты до достижения конечного тренировочного напряжения, равного 60% от номинального формовочного напряжения, выдерживание секций под тренировочным напряжением в течение 1 часа и последующая промывка секций в деионизованной воде при температуре 70-80°С в течение 30-40 мин.
Пример 2. осуществления заявляемого способа получения катодной обкладки.
Для нанесения тиенилсилана пропитали секции (аноды оксидированы в растворе ортофосфорной кислоты на напряжение 75 В, емкость анодов составила от 18,3 до 18,9 мкФ) 5%-иым раствором триэтокси-2-тиенилсилана в этиловом спирте в течение 5-10 минут при температуре 25°С, затем сушили сначала при комнатной температуре (25°С) в течение 15-30 минут, а затем - в сушильном шкафу при температуре 110°С в течение 15-30 минут.
Далее для нанесения 1-4 слоев полимерного электролита на основе PEDOT секции просушили при температуре 105°С в течение 20 минут и охладили до комнатной температуры (20-25°С), пропитали, с медленным погружением, в течение 2-5 минут в растворе полимеризации при нормальных условиях (20°С) и просушили в сушильном шкафу при температуре 30°С и влажности 65% в течение 60 минут. Затем повторно пропитанные секции сушили в сушильном шкафу, сначала при температуре 30°С и влажности 65-75% в течение 40-60 минут, затем - при температуре 60-70°С в течение 20-30 мин, затем - при температуре 100-105°С в течение 10-20 мин. и охладили до комнатной температуры (20-25°С); промыли 2 раза в свежеприготовленном 1 -2%-ом водном растворе п-толуолсульфоновой кислоты при температуре 50-70°С в течение 25-40 мин. и затем промыли в проточной деионизированиой воде при температуре 60-80°С в течение 30-40 мин. и последующей сушкой в сушильном шкафу при температуре 110-115°С в течение 30-40 мин. Повторили процесс.
Далее провели тренировку-подформовку секций в 1-2%-ном водном растворе п-толуолсульфоновой кислоты, для чего выдержали секции в этом растворе в течение 5-10 минут, затем подали на ячейку с секциями начальное тренировочное напряжение величиной - 23 В, которое повышали со скоростью 7 В за 3 минуты до достижения конечного тренировочного напряжения, равного 45 В, выдержали секции под тренировочным напряжением в течение 1-1,5 часа и промыли секции в деионизованной воде при температуре 60-75°С в течение 30-40 мин.
Далее выполнили нанесение 5-8 слоев полимерного электролита на основе PEDOT - аналогично нанесению 1-4 слоев и после нанесения 8-ого слоя провели тренировку-подформовку секций, как указано выше.
Задачей изобретения является создание оксидного конденсатора с твердым электролитом, в том числе чип-конденсатора.
Изобретение иллюстрируется схемой (см. чертеж) где: 1 - Тантал, 2 - Оксид тантала, 3 - Слой тиофенсодержащего силана, 4 - Электропроводящий полимер, 5 - Слой углеродной пасты, 6 - Слой серебряной пасты, 7 - эноксидный компаунд.
Оксидный конденсатор (фиг) с твердым электролитом, содержит секцию из объемно-пористого анода из вентильных металлов, на поверхности которого последовательно созданы: оксидный слой (2), являющийся диэлектриком; моиослой силана (3) катодная обкладка в виде полимерного покрытия на основе полиэтилендиокситиофена (4), полученная способом по п.2; углеродный слой, являющийся катодным переходным покрытием (5); серебросодержащий слой, являющийся катодным контактным покрытием (6), и оболочку, созданную, например, путем опрессовки секции пластмассой или заливки секции эпоксидным компаундом (7).
Сравнительный пример 3. осуществления способа-прототипа получения катодной обкладки приведен ниже.
Здесь не наносили подслой из тиенилсилана, а выполнили нанесение 1-4 слоев, после 4-ого слоя тренировку-подформовку секций, нанесение 5-8 слоев и после 8-ого слоя тренировку-подформовку секций - как описано в примере выше.
Были изготовлены конденсаторы номинала 20 В × 22 мкФ с катодной обкладкой по заявляемому способу (с силановым подслоем) и по способу-прототипу (без силанового подслоя), при этом при проведении термоэлектротренировки тех и других конденсаторов было обнаружено, что в партии конденсаторов с силановым подслоем напряжение на конденсаторах восстанавливалось быстрее, чем в партии конденсаторов без силанового подслоя. Электрические характеристики конденсаторов, изготовленных без силанового подслоя, а также конденсаторов, изготовленных с силановым подслоем, - представлены в таблице.
Из представленных в таблице данных видно, что конденсатор с силаном имеет существенно более низкие значения эквивалентного последовательного сопротивления и тока утечки, чем конденсатор без силана.
Данное описание и примеры рассматриваются как материал, иллюстрирующий изобретение, сущность которого и объем патентных притязаний определены в нижеследующей формуле изобретения, совокупностью существенных признаков и их эквивалентами.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ КОНДЕНСАТОРА И ОКСИДНО-ПОЛУПРОВОДНИКОВЫЙ КОНДЕНСАТОР | 2011 |
|
RU2463679C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ ОКСИДНО-ПОЛУПРОВОДНИКОВОГО КОНДЕНСАТОРА | 2012 |
|
RU2516525C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ ОКСИДНО-ПОЛУПРОВОДНИКОВОГО КОНДЕНСАТОРА | 2011 |
|
RU2480855C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ ОКСИДНО-ПОЛУПРОВОДНИКОВОГО КОНДЕНСАТОРА | 2005 |
|
RU2284070C9 |
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНОЙ ОБКЛАДКИ ТАНТАЛОВОГО ОБЪЕМНО-ПОРИСТОГО КОНДЕНСАТОРА | 2013 |
|
RU2538492C1 |
Способ изготовления катодного покрытия на основе электропроводящего полимера и твердотельный электролитический конденсатор с улучшенными емкостными характеристиками | 2022 |
|
RU2790858C1 |
Способ изготовления катодных обкладок объемно-пористых танталовых электролитических конденсаторов | 2016 |
|
RU2623969C1 |
Способ изготовления катодного покрытия на основе электропроводящего полимера и твердотельный электролитический конденсатор с низким эквивалентным последовательным сопротивлением и повышенной реализацией емкости анода | 2023 |
|
RU2816258C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ ИЗ ДИОКСИДА МАРГАНЦА НА ТАНТАЛОВЫХ АНОДАХ ОКСИДНО-ПОЛУПРОВОДНИКОВЫХ КОНДЕНСАТОРОВ | 2020 |
|
RU2740516C1 |
СОСТАВ ДЛЯ ФОРМИРОВАНИЯ ОРГАНИЧЕСКОГО ПОЛУПРОВОДНИКОВОГО КАТОДНОГО ПОКРЫТИЯ В ОКСИДНЫХ КОНДЕНСАТОРАХ С ТВЕРДЫМ ЭЛЕКТРОЛИТОМ | 1992 |
|
RU2039386C1 |
Изобретение относится к производству изделий электронной техники, конкретно - к производству оксидных конденсаторов с твердым электролитом на основе полимера. Предложены триалкоксисиланы общей формулы I, где R1 - Si(OAlk)3 или R1=-CH=N-CH2CH2CH2Si(OAlk)3, R2=R3=-OCH2CH2O-, в качестве кремнийсодержащих добавок для образования монослоя на поверхности танталового анода из спрессованного порошка тантала, а также применение триэтокси-2-тиенилсилана по тому же назначению. Предложены также способ получения катодной обкладки из полимерного электролита с использованием заявленных триалкоксисиланов и оксидный конденсатор с твердым электролитом, содержащий секцию из объемно-пористого анода из вентильных металлов с поверхностным слоем, полученным с использованием заявленных триалкоксисиланов. Технический результат - получение конденсатоорв с улучшенными техническими и эксплуатационными характеристиками. 4 н.п. ф-лы, 1 ил., 1 табл., 3 пр.
1. Триалкоксисиланы общей формулы I
,
где R2=R3=--OCH2CH2O-, R1=--Si(OAlk)3,
R2=R3=--OCH2CH2O-, R1=-CH=N-CH2CH2CH2Si(OAlk)3
в качестве кремнийсодержащих добавок для образования монослоя на поверхности танталового анода из спрессованного порошка тантала.
2. Применение триэтокси-2-тиенилсилана формулы
R=-Si(OEt)3, в качестве материала, образующего монослой на поверхности оксидированного тантала для получения электролитических конденсаторов.
3. Способ получения катодной обкладки из полимерного электролита, который заключается в нанесении 8 слоев полимеризующегося соединения на основе полиэтилендиокситиофена на секции из оксидированных объемно-пористых анодов из вентильных металлов и через каждые 4 нанесенных слоя тренировки-подформовки с последующей промывкой секций в деионизованной воде, отличающийся тем, что на секции предварительно нанесен триалкоксисилан общей формулы по п.1 и триметоксисилилтиофен по п.2 путем пропитки секций их 5%-ными растворами в этиловом спирте в течение 5 мин при температуре (25±5)°C с последующей сушкой в 2 этапа: при комнатной температуре в течение 15 мин и в сушильном шкафу при температуре, (110±5)°C в течение 15-20 мин.
4. Оксидный конденсатор с твердым электролитом, содержащий секцию из объемно-пористого анода из вентильных металлов, на поверхности которого последовательно созданы: оксидный слой (2), являющийся диэлектриком; монослой силана (3) и катодная обкладка в виде полимерного покрытия на основе полиэтилендиокситиофена (4), полученная способом по п.3; углеродный слой, являющийся катодным переходным покрытием (5); серебросодержащий слой, являющийся катодным контактным покрытием (6), и оболочку, созданную, например, путем опрессовки секции пластмассой или заливки секции эпоксидным компаундом (7).
Tinting Xu et al | |||
Self-assembled thienylsilane molecule as interfacial layer for ZnO nanowire/polymer hybrid system | |||
Journal of Photonics for Energy, 2011, vol.1, pp.011107/1-011107/9 | |||
US 7374586 B2, 20.05.2008 | |||
US 2005162815 A1, 28.07.2005 | |||
ДВУХСТОРОННИЙ ШИРОТНО-ИМПУЛЬСНЫЙ МОДУЛЯТОР МОСТОВОГО ИНВЕРТОРА | 2005 |
|
RU2309524C2 |
RU 2003125098 A, 20.03.2005. |
Авторы
Даты
2013-12-10—Публикация
2011-08-10—Подача