Изобретение относится к методам определения коэффициента теплопроводности частично прозрачных керамических и стеклообразных материалов с учетом их прозрачности.
Известен способ определения коэффициента теплопроводности частично прозрачных материалов стационарным методом плоского слоя, при котором образец нагревают изотермическим радиационным нагревателем, а коэффициент теплопроводности определяют по температуре нагревателя и полному потоку энергии (Авт. свид. СССР №473940, 1975, G01N 25/18). Недостатком этого способа является использование стационарного метода определения коэффициента теплопроводности, который требует больших временных затрат для получения температурной зависимости коэффициента теплопроводности в широком диапазоне температур.
Наиболее близким по технической сущности является способ определения коэффициента теплопроводности материала в условиях нестационарного одностороннего нагрева, основанный на решении коэффициентной обратной задачи теплопроводности (КОЗТ), при этом требующий меньших временных затрат (Анучин С.А., Степанов П.А. Методика исследований теплофизических свойств керамических материалов при высоких температурах // Новые огнеупоры. 2009. №5. С.41-43.). Однако данный способ не дает возможности учета прозрачности материала для теплового излучения, что приводит к повышению погрешности при определении коэффициента теплопроводности в частично прозрачных материалах.
Задачей предлагаемого изобретения является повышение точности определения коэффициента теплопроводности частично прозрачных материалов. Поставленная задача решается тем, что предложен способ определения коэффициента теплопроводности частично прозрачных материалов, включающий нестационарный нагрев образца, измерение температуры, определение температурной зависимости коэффициента теплопроводности посредством решения КОЗТ, отличающийся тем, что нагрев осуществляют радиационными импульсами с интервалами между ними 5-10 секунд, при этом измерение температуры производят синхронно в момент окончания импульса.
Изобретение поясняется конкретным примером определения коэффициента теплопроводности частично прозрачного материала.
В качестве исследуемого образца использовано кварцевое стекло марки KB (ГОСТ 15130-86). Образец представлял из себя сборку, составленную из нескольких пластин, размерами (50×50×10) мм, термопары размещались на фронтальной и тыльной поверхностях сборки и между пластинами сборки. Для данного образца нагрев осуществлялся радиационными импульсами с периодом следования 50-100 секунд с интервалами между ними 5-10 секунд, что достигалось модуляцией падающего теплового потока путем периодического отключения нагревателя. На фиг.1 представлены зависимости показаний термопар от времени нагрева, заделанных на фронтальной поверхности сборки (1), между пластинами сборки (2), на тыльной поверхности сборки (3) и зависимость мощности нагревателя от времени (4). На фиг.2 представлены результаты расчета коэффициента теплопроводности, полученные путем решения КОЗТ, по способу, изложенному в прототипе (1), по предложенному способу (2), при этом значения коэффициента теплопроводности кварцевого стекла по ГОСТ 15130-86 отражены зависимостью 3. Предлагаемый способ позволяет снизить погрешность определения коэффициента теплопроводности более чем в 2 раза.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения коэффициента теплопроводности частично прозрачных материалов | 1978 |
|
SU767631A1 |
Способ определения коэффициента теплопроводности частично прозрачных для теплового излучения материалов | 1984 |
|
SU1267240A1 |
Устройство для определения комплекса теплофизических характеристик композиционных материалов | 2020 |
|
RU2758414C1 |
Нестационарный способ определения истинного коэффициента теплопроводности сильнорассеивающих материалов | 1991 |
|
SU1784890A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ | 2007 |
|
RU2349908C1 |
СПОСОБ ИЗМЕРЕНИЯ СТЕПЕНИ ЧЕРНОТЫ | 2012 |
|
RU2510491C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ КИНЕТИЧЕСКИХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ | 2020 |
|
RU2753620C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КИНЕТИЧЕСКИХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ МАТЕРИАЛОВ | 2018 |
|
RU2701775C1 |
Способ измерения теплофизических свойств материалов и установка для его осуществления с использованием пирометров | 2023 |
|
RU2807398C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СТЕПЕНИ ЧЕРНОТЫ | 2012 |
|
RU2521131C2 |
Изобретение относится к области термометрии и может быть использовано для определения коэффициента теплопроводности частично прозрачных керамических и стеклообразных материалов с учетом их прозрачности. Способ включает нестационарный нагрев поверхности образца в виде пластины радиационными импульсами, измерение температуры в не менее трех точках по толщине образца с последующим вычислением искомой величины посредством решения коэффициентной обратной задачи теплопроводности. Интервалы между импульсами составляют 5-10 секунд, при этом измерение температуры производится синхронно в момент окончания импульса. Технический результат: снижение погрешности определения коэффициента теплопроводности частично прозрачных материалов более чем в 2 раза. 2 ил.
Способ определения коэффициента теплопроводности частично прозрачных материалов, включающий нестационарный радиационный нагрев поверхности образца в виде пластины, измерение температуры в не менее трех точках по толщине образца с последующим вычислением искомой величины посредством решения коэффициентной обратной задачи теплопроводности, отличающийся тем, что нагрев осуществляют импульсами с интервалами между ними 5-10 с, при этом измерение температуры производят синхронно в момент окончания импульса.
Способ определения линии насыщения жидкостей | 1983 |
|
SU1155926A1 |
Способ определения истинного коэффициента теплопроводности частично прозрачных материалов | 1972 |
|
SU473940A1 |
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ | 1996 |
|
RU2149389C1 |
СПОСОБ ЭКСПРЕСС-АНАЛИЗА ЖИДКИХ СРЕД | 2002 |
|
RU2221238C1 |
СПОСОБ ИДЕНТИФИКАЦИИ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ МАТЕРИАЛОВ | 2005 |
|
RU2303777C2 |
АВТОТЕРМЙЧЕСКИЙ РЕАКТОР ДЛЯ ВЕДЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ ПРОЦЕССОВ | 0 |
|
SU203635A1 |
Авторы
Даты
2013-12-10—Публикация
2012-07-03—Подача