СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЛЮМИНЕСЦЕНТНЫХ МАТЕРИАЛОВ Российский патент 2013 года по МПК C09K11/55 C09K11/63 C09K11/78 G01T1/11 

Описание патента на изобретение RU2502777C2

Изобретение относится к способу получения термолюминесцентных материалов на основе тетрабората магния, допированного диспрозием (MgB4O7:Dy), которые могут быть использованы в дозиметрии слабого ионизирующего излучения, для контроля работы атомных энергетических установок, ускорителей заряженных частиц, ренгеновской аппаратуры и т.п.

Аналогами описываемого термолюминофора (MgB4O7:Dy) являются материалы основанные на LiF (производство Harshaw, США) [www.bicron.com], LiF:Mg,Ti (TLD-100), его изотопные вариации с Li6 и Li7 (TLD-600 и TLD-700), CaF2:Mn,Dy, Al2O3:С [M.S. Akselrod, V.S. Kortov, D.J. Kravetsky, V.I. Gotlib. Highly sensitive thermoluminescent anion-defective α-Al2O3:C single crystal detectors // Radiat Prot Dosim. - 1990. - 32. - P. 15-20] и LiF:Mg,Cu,P [A.J.J. Bos. High sensitivity thermoluminescence dosimetry // N. Inst Meth. Phys. Res. B. - 2001. - 184. - P.3-28].

Недостатками этих термолюминофоров являются недостаточно точные измерения дозы облучения кожного покрова слабопроникающим излучением [Т.И.Гимадова, А.И.Шакс. Индивидуальные дозиметры для измерения эквивалентных доз в коже пальцев рук, лица и хрусталике глаза при хроническом и аварийном облучении // Аппаратура и новости радиац. измерений (АНРИ) - 2001. - №3. - Р.21-27], а также проблематична дозиметрия смешанных полей излучения.

Перспективными термолюминофорами для этих целей являются бораты на основе щелочных и щелочноземельных элементов (Li2B4O7, MgB4O7): 1) они обладают высокой термолюминесцентной чувствительностью, 2) из-за близости эффективных атомных номеров (Zэфф) термолюминофоров (Табл.1.) к мягкой биологической ткани (Zэфф=7,4) они идентичны биологической ткани по пропусканию и поглощению ионизирующего излучения. Однако, в настоящее время термолюминесцентная чувствительность термолюминесцентных дозиметров представленных в Табл.1. не в полной мере обеспечивает требования по нижнему пределу регистрируемых доз.

Общие характеристики некоторых термолюминесцентных дозиметров [СЕРИЯ НОРМ МАГАТЭ ПО БЕЗОПАСНОСТИ Оценка профессионального облучения от внешних источников ионизирующего излучения №RS-G-1.3].

Таблица 1 Тип ТЛД Эффективный атомный номер Основной пик (°C) Максимум пробега излучения (им) Относительная чувствительность Фединг LiF:Ti,Mg 8.3 200 400 1 5%годa LiF:Na,Mg 8.3 200 400 1 5%/годa LiF:Mg,Cu,P 8.3 210 400 25 5%/год Li2B4O7:Mn 7.3 220 605 0.20b 4%/месяц Li2B4O7:Cu 7.3 205 368 2b 10%/2 месяцаa MgB4O7:Dy 8.4 190 490 10b 4%/месяцa BeO 7.1 190 200-400 0.20b 8%/2 месяца CaSO4:Dy 14.5 220 480-570 30b 1%/2 месяца CaSO4:Tm 14.5 220 452 30b 1-2%/2 месяца CaF4:Mn 16.3 260 500 5b 16%/2недели CaF4 природный 16.3 260 380 23b очень слабое CaF4:Dy 16.3 215 480-570 15b 8%/2 месяцаa Al2O3 10.2 360 699 4b 5%/2неделиa

Наиболее близким термолюминесцентным материалом на основе бората магния, допированный редкоземельными элементами и кодопированный тетраборатами одновалентных металлов является MgB4O7, описанный в [Н. Tischer, W. Kern, H.P. Brehm / Themolumineszens-Dosimeter, dessen herstellung und Anwendung, PA TENT DE 3108164 A1].

Недостатками получения этого материала являются высокая температура отжига (880°С), неудовлетворительный фединг (4% месяц), трудоемкий процесс механического перетирания, а также прессование исходных компонентов в таблетки.

Целью изобретения является обеспечение лучшей гомогенизации за счет растворения исходных компонентов в полимерно-солевой композиции, снижение температуры синтеза и достижение устойчивой интенсивности термолюминесценции.

Это достигается тем, что неорганические исходные вещества растворяются в растворе полимера, что обеспечивает лучшую гомогенизацию компонентов композиций, чем при механическом перетирании, а также понижает температуру синтеза вследствие экзотермического разложения полимера.

Однофазность термолюминофора контролировали рентгенографически на дифрактометре D8 Advance Bruker AXS CuKα-излучение. Термолюминесцентный анализ проводился на установке, состоящей из нагревателя, терморегулятора, самописца и фотоумножителя. Для облучения использовался контрольный стронций-иттриевый бета источник. Доза облучения составила 7.5*10-3 Грэй. Результаты измерений термолюминесцентной чувствительности нормировались по сигналу от эталонного термолюминесцентного образца (ТЛД-580).

Пример 1:

Готовят смесь, содержащую 0.53095 г MgCl2, 1.37929 г H3BO3 и 0.15013 г Dy(NO3)3 (7 мас.% Dy) перетирают в среде этилового спирта по методике: тщательно растирают хлорид магния и борную кислоту в течение 15 мин, затем малыми порциями добавляют нитрат диспрозия.

Приготовление раствора полимера: в бюкс, объемом 50 мл, помещается 15 мл дист. воды и 5 мл полигексаметиленгуанидин гидрохлорида с молекулярной массой 8.5 кДа и концентрацией 7.09 мас.%.

Смесь из перетертых неорганических компонентов помещается в раствор полимера и растворяется при нагревании (90°C). Полученная полимерно-солевая композиция сушится на воздухе в сушильном шкафу при температуре 95°C. Полученный композит отжигают при температурах 700-800°C в течение 10-20 часов, затем перетирают в ступке и проводят измерение интенсивности ТЛ (рис.1).

Пример 2:

Готовят смесь, содержащую 0.53095 г MgCl2, 1.37929 г H3BO3 и 0.10724 г Dy(NO3)3 (5 мас.% Dy) перетирают в среде этилового спирта по методике: тщательно растирают хлорид магния и борную кислоту в течение 15 мин, затем малыми порциями добавляют нитрат диспрозия.

Приготовление раствора полимера: в бюкс, объемом 50 мл, помещается 15 мл дист. воды и 5 мл полигексаметиленгуанидин гидрохлорида с молекулярной массой 8.5 кДа и концентрацией 7.09 мас.%.

Смесь из перетертых неорганических компонентов помещается в раствор полимера и растворяется при нагревании (90°C). Полученная полимерно-солевая композиция сушится на воздухе в сушильном шкафу при температуре 95°С. Полученный композит отжигают при температурах 700-800°С в течение 10-20 часов, затем перетирают в ступке и проводят измерение интенсивности ТЛ (рис.1).

Предлагаемый способ получения термолюминесцентного материала выгодно отличается тем, что данные термолюминофоры обладают высокой и стабильной интенсивностью термолюминесценции, что позволяет их использовать в тканеэквивалентных дозиметрических пленках.

Похожие патенты RU2502777C2

название год авторы номер документа
ТЕРМОЛЮМИНЕСЦЕНТНОЕ ВЕЩЕСТВО 2015
  • Хамаганова Татьяна Николаевна
  • Хумаева Туяна Гатыповна
RU2651255C2
ТЕРМОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ 1991
  • Шавер И.Х.
  • Кронгауз В.Г.
  • Морозов Е.Г.
  • Харциев В.Е.
RU2039076C1
Оптическая матрица для термолюминесцентного материала и способ ее получения 2023
  • Акулов Дмитрий Александрович
  • Келлерман Дина Георгиевна
  • Калинкин Михаил Олегович
  • Абашеев Ринат Мансурович
  • Сюрдо Александр Иванович
RU2795672C1
Дозиметрический материал 2020
  • Калинкин Михаил Олегович
  • Келлерман Дина Георгиевна
  • Абашеев Ринат Мансурович
  • Сюрдо Александр Иванович
RU2724763C1
Дозиметрический материал 2021
  • Калинкин Михаил Олегович
  • Келлерман Дина Георгиевна
  • Акулов Дмитрий Александрович
  • Абашев Ринат Мансурович
  • Сюрдо Александр Иванович
RU2760455C1
СПОСОБ ИЗМЕРЕНИЯ ДОЗИМЕТРИЧЕСКОГО ТЕРМОЛЮМИНЕСЦЕНТНОГО СИГНАЛА, НАКОПЛЕННОГО В ТВЕРДОТЕЛЬНОМ ДЕТЕКТОРЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2009
  • Курмаев Эрнст Загидович
  • Мильман Игорь Игоревич
  • Литовченко Евгений Николаевич
  • Соловьев Сергей Николаевич
  • Ревков Иван Григорьевич
  • Федоренко Виктор Васильевич
RU2390798C1
СПОСОБ ОБРАБОТКИ ВЕЩЕСТВА ТВЕРДОТЕЛЬНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2003
  • Кортов В.С.
  • Мильман И.И.
  • Никифоров С.В.
RU2229145C1
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ 2017
  • Ягодин Виктор Валерьевич
  • Ищенко Алексей Владимирович
  • Шульгин Борис Владимирович
  • Гилязетдинова Гульнара Фраиловна
  • Ахмадуллина Наиля Сайфулловна
  • Лысенков Антон Сергеевич
  • Каргин Юрий Федорович
  • Солнцев Константин Александрович
RU2656022C1
Термолюминофор для композиционного детектора ионизирующего излучения 1981
  • Рожков Владимир Дмитриевич
  • Кронгауз Виктор Григорьевич
  • Шавер Иосиф Хаймович
SU1011666A1
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА НЕЙТРОНОВ 2008
  • Черепанов Александр Николаевич
  • Шульгин Борис Владимирович
  • Мильман Игорь Игориевич
  • Кружалов Александр Васильевич
  • Упорова Юлия Юрьевна
  • Королева Татьяна Станиславна
  • Кидибаев Мустафа Мусаевич
RU2445646C2

Иллюстрации к изобретению RU 2 502 777 C2

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЛЮМИНЕСЦЕНТНЫХ МАТЕРИАЛОВ

Изобретение может быть использовано в дозиметрии слабого ионизирующего излучения, для контроля работы атомных энергетических установок, ускорителей заряженных частиц, рентгеновской аппаратуры. Сначала готовят смесь, содержащую соединения компонентов термолюминесцентного материала на основе бората магния, допированного диспрозием, перетиранием в этиловом спирте. Затем полученную смесь вводят в водный раствор полигексаметиленгуанидин хлорида с молекулярной массой 8,5 кДа и концентрацией 7,09 масс.%, нагревают, сушат, и отжигают при температуре 700-800°C в течение 10-20 часов. Снижается температура синтеза, достигается устойчивая интенсивность термолюминесценции. 1 табл., 1 ил., 2 пр.

Формула изобретения RU 2 502 777 C2

Способ получения термолюминесцентного материала на основе бората магния, допированного диспрозием, отличающийся тем, что сначала готовят смесь, содержащую соединения компонентов термолюминесцентного материала путем их перетирания в этиловом спирте, затем полученную смесь вводят в водный раствор полигексаметиленгуанидин хлорида с молекулярной массой 8,5 кДа и концентрацией 7,09 мас.%, нагревают, сушат, после чего отжигают при температуре 700-800°C в течение 10-20 ч.

Документы, цитированные в отчете о поиске Патент 2013 года RU2502777C2

DE 3108164 A1, 25.02.1982
Способ получения кристаллического дибората стронция 1987
  • Годе Гаральд Карлович
  • Клявиня Лайла Алдисовна
  • Плышевский Юрий Сергеевич
  • Суворова Муза Рафаиловна
  • Габова Екатерина Леонидовна
  • Сприцис Андрис Альфредович
SU1502465A1
L.L
CAMPOS, O.O
FERDINAND FILHO, Thermoluminescent characterization of MgB4O7:Dy sintered pellets, Radiation Protection Dosimetry, 1990, v
Способ сопряжения брусьев в срубах 1921
  • Муравьев Г.В.
SU33A1
Т
KARALI et al
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Облицовка комнатных печей 1918
  • Грум-Гржимайло В.Е.
SU100A1

RU 2 502 777 C2

Авторы

Чимитова Ольга Доржицыреновна

Стельмах Сергей Александрович

Григорьева Мария Николаевна

Субанаков Алексей Карпович

Базарон Лариса Улзытовна

Перевалов Александр Владимирович

Базаров Баир Гармаевич

Могнонов Дмитрий Маркович

Базарова Жибзема Гармаевна

Даты

2013-12-27Публикация

2012-03-27Подача