Изобретение относится к области измерения ионизирующих излучений при текущем и аварийном индивидуальном дозиметрическом контроле, и может быть использовано для измерения уровней радиационного воздействия на критические органы человека для обеспечения радиационной безопасности людей, работающих с источниками ионизирующих излучений, в медицинской технике.
Известен дозиметрический материал на основе силиката магния, допированный лантаноидом, в частности эрбием, и металлом из группы натрий, кальций или алюминий, используемый в области мониторинга дозы радиационного облучения путем термолюминесцентной дозиметрии (заявка CN 109652068, МПК C09K 11/59, 2019 г.).
Однако, недостатком известного материала является невысокая чувствительность при измерениях, проводимых в зоне низкой радиационной активности. Кроме того, двойное допирование усложняет процесс получения материала.
Известен дозиметрический материал, имеющий химическую формулу LiMgPO4:Eu,Sm со структурой оливина и пиком термолюминесценции при темратуре 354оС. Материал в основном применяется в медицине при лечении онкологических больных и используется для тестирования радиационной дозы в режиме offline или online(патент CN 103194230, МПК C09K 11/70, 2014г.).
Недостатком известного материала является невозможность длительного хранения информации из-за отсутствия стабильности характеристик во времени в течение длительного периода.
Известен дозиметрический материал на основе сложного ортофосфата лития и магния состава LiMgPO4:Tm,Tb. Мониторинг адсорбированной дозы радиационного излучения может быть осуществлен как с использованием термолюминесценции, так и оптически стимулированной люминесценции (патент CN 207318732, МПК G01T 1/10, 2018 г.). При этом сигнал оптической люминесценции базового люминофора состава LiMgPO4 составляет 87% по сравнению с люминофором, допированным туллием и тербием (S.N. Menon, B.S. Dhabekar, Sonal Kadam, D.K. Koul “Fading studies in LiMg PO4:Tb, B and synthesis of new LiMg PO4 based phosphor with better fading characteristics” Nuclear Inst. And Methods in Physics Research B 436, 2018, p. 45-50).
Однако недостатком известного люминофора является его недостаточно высокая чувствительность к адсорбируемой дозе радиационного излучения.
Наиболее близким по технической сущности к предлагаемому техническому решению является дозиметрический материал на основе литий-магний ортофосфата состава LiMgPO4:Tb, В, допированный редкоземельным элементом, в частности осмием, гадолинием, торием. Чувствительность к адсорбируемой дозе радиационного излучения известного материала в 1,5-3 раза выше, чем чувствительность базового люминофора LiMgPO4:Tb, В (патент CN102863958, МПК C09K 11/70, 2014 г.)(прототип).
Однако недостатком известного люминофора также является его недостаточно высокая чувствительность к адсорбируемой дозе радиационного излучения.
Таким образом, перед авторами стояла задача разработать дозиметрический материал, обладающий высокой чувствительность к адсорбируемой дозе радиационного излучения.
Поставленная задача решена в предлагаемом дозиметрическом материале на основе ортофосфата литий-магния состава LiMgPO4, допированного редкоземельным элементом, который допирован 3+ионами эрбия с концентрацией, равной 0,1-0,25 ат.%.
В настоящее время из патентной и научно-технической литературы не известен дозиметрический материал на основе ортофосфата литий-магния состава LiMgPO4, допированный 3+ионами эрбия с концентрацией в предлагаемом интервале.
Исследования, проведенные авторами позволили установить эффект активации матрицы, в частности усиление ее свечения в случае термолюминесценции при замещении части атомов в кристаллической структуре матрицы на 3+ионы эрбия. При этом чувствительность к адсорбируемой дозе радиационного излучения предлагаемого материала увеличивается в 2-2.5 раза по сравнению с чувствительностью известного люминофора LiMgPO4:Tb, В. Кроме того, предлагаемый материал может быть применим как в случае использования термолюминесценции, так оптически стимулированной люминесценции.
Предлагаемый дозиметрический материал на основе ортофосфата литий-магния состава LiMgPO4, допированный 3+ионами эрбия с концентрацией 0,1-0,25 ат.% был получен путем твердофазного синтеза с использованием в качестве исходных реагентов Li2CO3(карбонат лития), MgCO3∙Mg(OH)2∙3H2O(карбонат магния основной трехводный), NH4H2PO4(дигитроортофосфат аммония, Er2O3(оксид эрбия). Все реагенты имели квалификацию осч. При этом реагенты были взяты в стехиометрическом соотношении. Способ получения предлагаемого материала включает четыре стадии, причем перед первой и второй стадиями смесь реагентов тщательно перетирают, а перед третьей и четвертой стадией после перетирания прессуют в диски. Отжиг осуществляют: на первой стадии – при температуре 300-310оС в течение 12 часов, на второй стадии – при температуре 500-510оС в течение 12 часов, на третьей стадии – при температуре 900-910оС в течение 12 часов, на четвертой стадии – при температуре 1000-1010оС в течение 12 часов. Полученный материал хранили в герметичных пластиковых пакетах в эксикаторе. Полученный материал был аттестован методом рентгено-фазового анализа. Наличие примесных фаз не выявлено, материал является однофазным. Дозиметрические характеристики материалов были исследованы методом оптически стимулированной люминесценции и термически стимулированной люминесценции. Для предварительного облучения образца была использована рентгеновская трубка Eclipse, U=30 кВ, I=30 мкА. Для регистрации оптически стимулированной люминесценции была использована установка собственного производства оснащенная фотоумножителем ФЭУ-130 и светофильтром УФС 2 для дополнительного возбуждения был использован светодиод типа FYLP-1W-PGB с длиной волны излучения 520 нм. Для регистрации термолюминесценции была использована установка собственного производства, оснащенная фотоумножителем ФЭУ-130 с пониженной чувствительностью к тепловому излучению нагревателя, нагрев производился с постоянной скоростью 2 оС/сек.
Получение предлагаемого материала иллюстрируется следующими примерами.
Пример 1. Берут 0.2897 г Li2CO3(карбоната лития), 0.7214 г 3MgCO3∙Mg(OH)2∙3H2O(карбоната магния основного трехводного), 0.9087 г NH4H2PO4(дигитроортофосфата аммония), 0.0038 г Er2O3(оксида эрбия), что соответствует стехиометрии. Все реагенты имеют квалификацию осч. Смесь исходных реагентов тщательно перетирают в течение 20 мин в агатовой ступке, затем отжигают в платиновом тигле при температуре 310оС в течение 12 часов. Полученный продукт снова тщательно перетирают в течение 20 мин в агатовой ступке, затем отжигают в платиновом тигле при температуре 510оС в течение 12 часов. Полученный продукт снова тщательно перетирают в течение 20 мин в агатовой ступке, затем прессуют в диски диаметром 10 мм при давлении 60 кг/мм2 и отжигают в платиновом тигле при температуре 910оС в течение 12 часов. После чего снова тщательно перетирают в течение 20 мин в агатовой ступке, затем прессуют в диски диаметром 10 мм при давлении 60 кг/мм2 и отжигают в платиновом тигле при температуре 1010оС в течение 12 часов. При перетирании дисков для получения более мелкодисперсной фазы используют этиловый спирт. Получают материал состава LiMgPO4:Er с концентрацией 3+ионов эрбия 0,25 ат.%. Полученный материал хранят в герметичных пластиковых пакетах в эксикаторе. На фиг. 1 изображена зависимость оптически стимулированной люминесценции от времени. При введении 3+ионов эрбия с концентрацией 0,25 ат.% интенсивность оптически стимулированной люминесценции возрастает в 3-3.5 раза по сравнению с базовым не допированным ортофосфатом литий-магния состава LiMgPO4. На фиг. 2 изображена зависимость интенсивности термолюминесценции от температуры нагрева образца. При введении 3+ионов эрбия с концентрацией 0,25 ат.% интенсивность термолюминесценции возрастает в 12 - 13 раз по сравнению с базовым не допированным ортофосфатом литий-магния состава LiMgPO4. На фиг. 3 изображена дозовая зависимость интенсивности термолюминесценции при различных дозах облучения. При низких дозах облучения LiMgPO4 допированный 3+ионами эрбия с концентрацией 0,25 ат.% проявляет активность, и ход зависимости является линейным.
Пример 2. Берут 0.2915 г Li2CO3(карбоната лития), 0.7227 г 3MgCO3∙Mg(OH)2∙3H2O(карбоната магния основного трехводного), 0.9103 г NH4H2PO4(дигитроортофосфата аммония), 0.0015 г Er2O3(оксида эрбия), что соответствует стехиометрии. Все реагенты имеют квалификацию осч. Смесь исходных реагентов тщательно перетирают в течение 20 мин в агатовой ступке, затем отжигают в платиновом тигле при температуре 300оС в течение 12 часов. Полученный продукт снова тщательно перетирают в течение 20 мин в агатовой ступке, затем отжигают в платиновом тигле при температуре 500оС в течение 12 часов. Полученный продукт снова тщательно перетирают в течение 20 мин в агатовой ступке, затем прессуют в диски диаметром 10 мм при давлении 60 кг/мм2 и отжигают в платиновом тигле при температуре 900оС в течение 12 часов. После чего снова тщательно перетирают в течение 20 мин в агатовой ступке, затем прессуют в диски диаметром 10 мм при давлении 60 кг/мм2 и отжигают в платиновом тигле при температуре 1000оС в течение 12 часов. При перетирании дисков для получения более мелкодисперсной фазы используют этиловый спирт. Получают материал состава LiMgPO4:Er с концентрацией 3+ионов эрбия 0,1 ат.%. Полученный материал хранят в герметичных пластиковых пакетах в эксикаторе. На фиг. 4 изображена зависимость оптически стимулированной люминесценции от времени. При введении 3+ионов эрбия с концентрацией 0,1 ат.% интенсивность оптически стимулированной люминесценции возрастает в 3-3.5 раза по сравнению с базовым не допированным ортофосфатом литий-магния состава LiMgPO4. На фиг. 5 изображена зависимость интенсивности термолюминесценции от температуры нагрева образца. При введении 3+ионов эрбия с концентрацией 0,1 ат.% интенсивность термолюминесценции возрастает в 9-10 раз по сравнению с базовым не допированным ортофосфатом литий-магния состава LiMgPO4. На фиг. 6 изображена дозовая зависимость интенсивности термолюминесценции при различных дозах облучения. При низких дозах облучения LiMgPO4 допированный 3+ионами эрбия с концентрацией 0,1 ат.% проявляет активность, и ход зависимости является линейным.
Таким образом, авторами предлагается дозиметрический материал, имеющий высокую чувствительность к адсорбируемой дозе радиационного излучения, который применим как в случае использования термолюминесценции, так и оптически стимулированной люминесценции.
название | год | авторы | номер документа |
---|---|---|---|
Дозиметрический материал | 2021 |
|
RU2760455C1 |
Оптическая матрица для термолюминесцентного материала и способ ее получения | 2023 |
|
RU2795672C1 |
ТЕРМОЛЮМИНЕСЦЕНТНОЕ ВЕЩЕСТВО | 2015 |
|
RU2651255C2 |
Сложный натриевый германат лантана, неодима и гольмия в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения | 2017 |
|
RU2654032C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЛЮМИНЕСЦЕНТНЫХ МАТЕРИАЛОВ | 2012 |
|
RU2502777C2 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ТЕРМОЛЮМИНОФОРА | 2004 |
|
RU2264634C1 |
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ | 2017 |
|
RU2656022C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА - ФТОРИСТОГО ЛИТИЯ | 1966 |
|
SU216561A1 |
СЛОЖНЫЙ ГАФНАТ ЛИТИЯ-ЛАНТАНА В КАЧЕСТВЕ ЛЮМИНЕСЦЕНТНОГО МАТЕРИАЛА ДЛЯ ПРЕОБРАЗОВАНИЯ МОНОХРОМАТИЧЕСКОГО ИЗЛУЧЕНИЯ ЛАЗЕРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2015 |
|
RU2606229C1 |
СПОСОБ ПОЛУЧЕНИЯ НАТРИЙ - ИТТРИЕВЫХ СИЛИКАТОВ, ДОПИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ | 2023 |
|
RU2807989C1 |
Изобретение относится к области измерения ионизирующих излучений при дозиметрическом контроле, в частности к дозиметрическому материалу, который может быть использован для измерения уровней радиационного воздействия на органы человека для обеспечения радиационной безопасности людей, работающих с источниками ионизирующих излучений, в медицинской технике. Дозиметрический материал на основе ортофосфата литий-магния состава LiMgPO4, который допирован 3+ионами эрбия с концентрацией, равной 0,1-0,25 ат.%. Дозиметрический материал имеет высокую чувствительность к адсорбируемой дозе радиационного излучения и применим при использовании термолюминесценции и оптически стимулированной люминесценции. 6 ил.
Дозиметрический материал на основе ортофосфата литий-магния состава LiMgPO4, допированного редкоземельным элементом, отличающийся тем, что он допирован 3+ионами эрбия с концентрацией, равной 0,1-0,25 ат.%.
CN 102863958 B, 30.07.2014 | |||
CN 207318732 U, 04.05.2018 | |||
CN 103194230 A, 10.07.2013 | |||
CN 109652068 A, 19.04.2019 | |||
ТЕРМОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ | 1991 |
|
RU2039076C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ФТОРИСТОГО ЛИТИЯ | 1999 |
|
RU2149426C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА - ФТОРИСТОГО ЛИТИЯ | 1966 |
|
SU216561A1 |
Авторы
Даты
2020-06-25—Публикация
2020-02-06—Подача