Изобретение относится к радиолокации, а именно к устройствам, предназначенным для имитации частотно-временной структуры радиолокационного сигнала, отраженного от подстилающей поверхности, от одной или нескольких целей, находящихся на фиксированном направлении, и может быть использовано, например, для имитации ложных целей и помех для защиты присутствующих целей, для имитации боевой работы радиолокационной системы (РЛС), а также для имитации эхо-сигналов радиовысотомеров (РВ) - измерителей высоты полета.
В зависимости от типа сигнала и способов сканирования РЛС оптимальными будут различные методы и алгоритмы формирования имитирующего сигнала. Для РЛС импульсного излучения форма зондирующего сигнала, как правило, постоянна и точно известна, поэтому отраженный сигнал может быть заранее подготовлен в сигнальной памяти с учетом параметров моделирования и выдан на вход РЛС по сигналу пикового детектора обнаруживающего начало зондирующего импульса. В современных РЛС для защиты от помех могут использовать не только переменный период модуляции, но и переменный вид зондирующего сигнала. Поэтому расчет отраженного сигнала и последующее его воспроизведение необходимо выполнять в реальном масштабе времени на основе принимаемой реализации сигнала.
Это приводит к необходимости прямой имитации отраженного сигнала как суммы сигналов, отраженных различными достаточно малыми по сравнению с облучаемой площадью участками поверхности или эквивалентными блестящими точками.
Известно устройство для имитации радиолокационных портретов реальных целей [1, стр.134-135, рис.5.2] - фиг.1, в котором зондирующий импульс от радиолокатора, для которого создается радиолокационный портрет, поступает через приемную антенну, усилитель 1, устройство грубой задержки 2, устройство точной задержки 3, модуляторы набора модуляторов 4 и сумматор 10 на выход имитатора. Устройство грубой задержки 2 осуществляет задержку по времени, соответствующую расстоянию до ближайшей блестящей точки имитируемой цели. Линия задержки с отводами 3 обеспечивает имитацию блестящих точек цели. Амплитудные и фазовые модуляции выполняются в модуляторах набора модуляторов 4 с помощью эталонных сигналов Ui, соответствующих характеристикам целей. С выходов модуляторов 4 сигналы, имитирующие соответствующие блестящие точки, поступают на сумматор 10 и далее в передающую антенну.
Описанное устройство имитатора по структуре и принципу функционирования соответствует системе увеличения радиочастотного отклика [2], устройству генератора электромагнитной цели [3], методу обмана сонара или радиолокатора и ложной цели применяющей этот метод [4], методу электронного увеличения радиолокационных целей (техники) [5, 6].
В качестве прототипа можно выбрать типовое для данной задачи и, являющееся из просмотренной литературы хронологически первым, устройство для имитации радиолокационных целей с высоким разрешением [6], полностью соответствующее вышеописанному устройству для имитации радиолокационных портретов реальных целей [1], приведенному на фиг.1. Наличие ЦАП 9 для управления модуляторами набора модуляторов 4 в виде отдельных блоков является особенностью конкретного аппаратного решения и не принципиально для описания работы и устройства имитатора.
При практическом применении описанных методов и устройств имитации радиолокационных целей точность формирования сигнала определяется не только количеством отводов линии задержки, и их дискретом по времени, но и методом обработки сигнала: цифровым или аналоговым.
Например, при аналоговой обработке (см. фиг.1) качество сигнала последовательно снижается в устройствах грубой и многоотводной линий задержки, затем в модуляторах и сумматоре, а количество используемых ЦАП равно числу каналов с отводами линии задержки.
Линии задержки, модуляторы и сумматоры могут быть аналоговыми или цифровыми, а эталонные характеристики цели в имитаторах всегда формируются в цифровом виде, поэтому все устройства имитации содержат некоторое количество блоков преобразования ЦАП и АЦП.
Для повышения качества имитации само формирование сигнала также можно выполнять в цифровом виде на многоотводной цифровой линии задержки 3 и модуляторах 4 (фиг.2а, б). При этом для оцифровки входного сигнала достаточно использовать одно быстродействующее АЦП 8, а для формирования выходного сигнала имитатора необходимо использовать множество ЦАП 9 и один аналоговый сумматор 10 (фиг.2а) или многовходовый цифровой сумматор 11 и один ЦАП 9 (фиг.2б).
Обозначения на фиг.2: A(f) - сигнал с приемной антенны, X(t) - сигнал выдаваемый на излучающую антенну, U1…Un - параметры амплитудно-фазовой модуляции для управления n модуляторами.
Дополнительные усилители, аттенюаторы для согласования уровней и возможные смесители, например, с сигналом гетеродина для согласования рабочей полосы частот блоков обработки сигналов не показаны, но могут быть использованы и рассчитаны в соответствии с [7]. Для исключения попадания выходного сигнала с передающей антенны на вход приемной антенны можно использовать циркулятор, стробирование работы и/или пространственное разнесение антенн [1, стр.184]. При стационарных испытаниях, возможно непосредственное подключение кабелей к исследуемой радиолокационной системе без использования антенн.
При цифровой обработке сигнала с использованием в качестве линий задержки буферов в оперативной памяти достаточного размера можно варьировать значения всех задержек блестящих точек целей без отдельного устройства грубой задержки. При этом можно формировать радиолокационные портреты произвольного количества целей практически произвольной протяженности с ограничением общего количества блестящих точек сцены возможностями аппаратного решения - количеством отдельных модуляторов набора модуляторов 4.
Быстродействующие многовходовый цифровой сумматор или набор ЦАП для каждого канала при аналоговом сумматоре сложны для реализации.
Целью предлагаемого изобретения является упрощение конструкции устройств формирования сигнала радиолокационной цели без ухудшения качества имитируемых радиолокационных портретов целей.
При имитации типовых радиолокационных целей - летательных аппаратов, достаточно выполнять модуляцию только индивидуальных амплитуд отдельных сигналов, а имитацию доплеровского сдвига можно выполнить в отдельном дополнительном модуляторе.
Такой вариант формирования сигнала типовой радиолокационной цели показан на фиг.3: оставлены n умножителей 12 на коэффициенты Е1-En и дополнительный модулятор 7 для сдвига частоты на среднее значение f0=mean(f1…fn), соответствующее доплеровским сдвигам n блестящих точек имитируемой цели.
Вместо многовходового сумматора 10 в ряде случаев (для сигналов, спектральная плотность которых в текущий момент времени сосредоточена в узкой полосе частот, например ЛЧМ сигналы радиовысотомеров с «медленной» модуляцией) при корректном выборе параметров работы можно использовать коммутатор, который циклически подключает к одному выходу один из n сигналов.
При импульсном методе работы радиолокатора имитируемая цель будет мерцать. При непрерывном излучении или излучении зондирующего сигнала импульсами с длительностью больше n·Δt, где Δt - длительность интервала коммутации каждого сигнала, выходной сигнал X(t) (для фиг.3) будет содержать равные Δt отрезки излученного сигнала с переменной задержкой и скачками фазы в моменты коммутации, что в частотной области приведет к тому, что к исходным гармоникам сигнала добавятся гармоники соответствующие сумме и разности частот «полезного» сигнала и частоты коммутации умноженной на целое число. При выборе частоты коммутации в несколько раз ниже несущей частоты и вне полосы «полезных» частот модуляции сигнала, с учетом фактического наличия во всех радиолокационных приемниках ограничивающих частотных фильтров сигнала, результирующий сигнал в рабочей (обычно низкочастотной) области по спектральному составу будет эквивалентен сигналу образованному обычным суммированием сигналов. Очевидно, что при среднем значении Ei=Re{Ui}=1, выходной сигнал с коммутатора слабее в n раз по амплитуде, поэтому полагаем, что по введенным ранее обозначениям Ei=n Re{Ui} либо умножение на n выполняется в дополнительном усилителе при согласовании и обеспечении оптимального уровня сигнала [7].
Нарушение мгновенных спектров и появление лишних скачков фазы не скажется на работе типового радиолокатора, т.к. поиск/захват/сопровождение целей выполняются без учета фаз сигналов с усреднением в несколько элементов разрешения и, как правило, в несколько периодов модуляции и сканирования. В радиолокаторах высокого разрешения с построением изображения фоно-целевой обстановки и распознавания типов целей также выполняется математическое усреднение в несколько периодов модуляции и сканирования.
Таким образом, замена сумматора на коммутатор в целом обеспечивает эквивалентность сигнала на временной оси и в его рабочей полосе частот по спектральному составу с нарушением мгновенных спектров и появлением лишних скачков фазы. Дополнительные исследования и результаты моделирования будут приведены после описания схемы предлагаемого имитатора. Постоянство амплитуды выходного сигнала коммутатора (при наличии сигнала на входе имитатора) может быть компенсировано в дополнительном модуляторе умножением на шумовой коэффициент со средним значением равным 1.
При использовании коммутатора 6, управляемого синхронизатором 5, можно заменить отдельные амплитудные преобразования сигналов таким тактированием работы коммутатора, чтобы длительности интервалов коммутации сигналов были пропорциональны соответствующим амплитудам сигналов E1-En - фиг.4. Необходимое общее усиление амплитуды выполняется в дополнительном модуляторе 7: Е0=ΣRe{Ui}. Общий сдвиг частоты f0=mean(f1…fn).
Для одновременной имитации нескольких целей, отражений от подстилающей поверхности с имитацией движения радиолокатора, необходимо использовать различные индивидуальные доплеровские сдвиги f1…fn всех блестящих точек всех целей, которое выполняется в модуляторах частоты: (фазы) 4, но применением коммутатора 6, управляемого синхронизатором 5 по значениям амплитудных коэффициентов E1-En можно упростить общую конструкцию устройства формирования сигнала радиолокационной цели как при аналоговой так и при цифровой обработке сигнала без ухудшения качества имитируемых радиолокационных портретов целей - фиг.5.
В зависимости от возможностей аппаратной реализации можно сочетать суммирование и коммутацию сигналов отдельных блестящих точек целей, для изменения амплитуды и сдвига частоты использовать цифровые или аналоговые модуляторы.
Предлагаемым техническим решением упрощаются требования к аппаратуре устройства формирования сигнала радиолокационной цели как при аналоговой так и при цифровой обработке сигнала без существенного ухудшения качества имитируемых портретов целей при зондировании преимущественно длительными сигналами.
Для достижения этого технического результата прототип (патент GB 2134740 [6]), содержащий последовательно соединенные усилитель сигнала приемной антенны 1, устройство грубой задержки 2, устройство точной задержки 3, выходы которого соединены с первыми входами модуляторов набора модуляторов 4, снабжен синхронизатором 5, коммутатором сигнала 6 и дополнительным модулятором 7, причем с выхода синхронизатора 5 на дополнительный управляющий вход коммутатора сигнала 6 подается сигнал выбора номера входного сигнала, поступающего на коммутатор 6 с выхода одного из модуляторов частоты (фазы) набора модуляторов 4, на вторые входы модуляторов набора модуляторов 4 подаются коэффициенты фазовой или частотной модуляции, на входы синхронизатора 5 подаются коэффициенты амплитудной модуляции для пропорционального управления длительностью интервалов работы коммутатора сигнала 6, выход коммутатора сигнала 6 соединен с первым входом дополнительного модулятора 7, на второй и третий входы дополнительного модулятора 7 подаются коэффициенты фазовой и амплитудной модуляции, выходной сигнал дополнительного модулятора 7 выдается на передающую антенну.
Устройство содержит (фиг.6):
1 - усилитель;
2 - устройство грубой задержки;
3 - устройство точной задержки;
4 - набор модуляторов частоты (фазы);
5 - синхронизатор;
6 - коммутатор сигнала;
7 - дополнительный модулятор.
Устройство работает следующим образом: зондирующий импульс от радиолокатора, для которого создается радиолокационный портрет, поступает через приемную антенну, усилитель 1, устройство грубой задержки 2, устройство точной задержки 3, набор модуляторов частоты (фазы) 4, коммутатор сигнала 6 и дополнительный модулятор 7 на выход имитатора. Устройство грубой задержки 2 осуществляет задержку по времени, соответствующую расстоянию до ближайшей блестящей точки имитируемой цели. Устройство точной задержки на базе многоотводной линии задержки 3 обеспечивает имитацию блестящих точек цели (целей) с индивидуальными задержками. Индивидуальные амплитудные и фазовые модуляции выполняются с помощью соответствующих коэффициентов, формируемых внешним устройством, причем коэффициенты амплитудной модуляции поступают в синхронизатор 5, а коэффициенты фазовой модуляции поступают в набор модуляторов частоты (фазы) 4. С выходов набора модуляторов 4 сигналы, имитирующие соответствующие блестящие точки, поступают на коммутатор сигнала 6 и далее в дополнительный модулятор 7. В дополнительном модуляторе 7 выполняются дополнительно заданные амплитудные и фазовые модуляции (коэффициенты f0 и Е0 формируется во внешнем устройстве). Далее сигнал выдается на выход имитатора - в передающую антенну.
На фиг.7 приведен пример моделирования и сравнения низкочастотной огибающей сигнала получаемого на выходе после смесителя с зондирующим сигналом радиолокатора с непрерывным излучением с линейной частотной модуляцией - сигнал биений.
Имитируемый сигнал биений состоит из отрезков синусоид - гармоник соответствующих имитируемой дальности блестящих точек - фиг.7а. Чередование отрезков представляет результат коммутации сигналов с разными параметрами. На фиг.7б приведен соответствующий спектр сигнала полученного из отрезков синусоид.
Известно, что для классических спектральных оценок высота спектральных пиков служит надежным показателем относительной мощности гармоник сигнала. В полученном при сравнении спектре гармоники «полезного» сигнала имеют частоты от 28 до 45 кГц: на фиг.7в (увеличенном фрагменте фиг.7б) все 6 заданных гармоник «полезного» сигнала биений просматриваются отдельно, т.к. выбрана большая длительность сигнала. Соответствующий исходный сигнал биений при обычном суммировании синусоид приведен на фиг.7г, а его спектр содержит только 6 гармоник и совпадает со спектром на фиг.7в.
В низкочастотной области (в рабочей полосе приемника радиолокатора) соотношения амплитуд гармоник при наличии и отсутствии коммутации одинаковы, поэтому получаемые сигналы будут одинаково восприняты аппаратурой радиолокатора, которая при наличии достаточной разрешающей способности определит заданные имитируемые значения оценок дальности соответствующих блестящих точек радиолокационного портрета цели.
Все основные элементы схемы преобразования сигнала в имитаторе радиолокационной цели при зондировании преимущественно длительными сигналами фиг.6 реализуемы в аналоговой и/или цифровой форме. Для повышения качества имитации формирование сигнала целесообразно выполнять в цифровом виде на цифровых линиях задержки и модуляторах, например, используя СБИС 1879BM3(DSM) можно реализовать переменную линию задержки, устройство сдвига частоты преобразуемого сигнала, программно-управляемую коммутацию нескольких обрабатываемых сигналов и другие функции цифровой обработки сигналов [8].
Литература
1. Перунов Ю.М., Фомичев К.И., Юдин Л.М. Радиоэлектронное подавление информационных каналов систем управления оружием / Под. Ред. Ю.М. Перунова. Изд. 2-е, испр. и дополн. - М.: «Радиотехника», 2008. - 416 с. (стр.134-135, рис.5.2)
2. Патент US 2008/018525. Radio frequency signature augmentation system. Дата публикации: 23.09.1986 (фиг.22)
3. Патент US 5892479. Electromagnetic target generator. Дата публикации: 06.04.1999.
4. Патент FR 2596164. Method for deceiving a sonar or radar detector, and a decoy for implementing the method. Дата публикации: 25.09.1987.
5. Патент US 4613863. Electronic augmentation of radar targets. Дата публикации: 23.09.1986 (фиг.2)
6. Патент GB 2134740. Electronic augmentation of radar techniques. Дата публикации: 15.08.1984.
7. Патент RU 2412449. Имитатор радиолокационной цели. Дата приоритета: 26.12.2008.
8. Микросхема интегральная 1879BM3(DSM), Техническое описание. Версия 1.1, ЮФКВ 431268 001 ТО1 К, Научно-технический центр «Модуль». М. 2002.
название | год | авторы | номер документа |
---|---|---|---|
ИМИТАТОР РАДИОЛОКАЦИОННОЙ ЦЕЛИ ПРИ ЗОНДИРОВАНИИ ПРЕИМУЩЕСТВЕННО ДЛИТЕЛЬНЫМИ СИГНАЛАМИ | 2014 |
|
RU2568899C2 |
УСТРОЙСТВО ДЛЯ ИМИТАЦИИ ЛОЖНОЙ РАДИОЛОКАЦИОННОЙ ЦЕЛИ ПРИ ЗОНДИРОВАНИИ СИГНАЛАМИ С ЛИНЕЙНОЙ ЧАСТОТНОЙ МОДУЛЯЦИЕЙ | 2016 |
|
RU2625567C1 |
ИМИТАТОР РАДИОЛОКАЦИОННОЙ ЦЕЛИ | 2018 |
|
RU2676469C1 |
ИМИТАТОР ЛОЖНОЙ РАДИОЛОКАЦИОННОЙ ЦЕЛИ ПРИ ЗОНДИРОВАНИИ СИГНАЛАМИ С ЛИНЕЙНОЙ ЧАСТОТНОЙ МОДУЛЯЦИЕЙ | 2011 |
|
RU2486540C1 |
Имитатор радиолокационных целей | 2021 |
|
RU2787576C1 |
ИМИТАТОР ПАССИВНОГО РАДИОЛОКАТОРА | 1987 |
|
SU1841002A1 |
ИМИТАТОР ДВИЖУЩИХСЯ ОБЪЕКТОВ | 2010 |
|
RU2449308C1 |
РАДИОЛОКАЦИОННЫЙ ИМИТАТОР ЦЕЛИ | 2007 |
|
RU2358279C1 |
ИМИТАТОР ПАССИВНОГО РАДИОЛОКАТОРА | 1988 |
|
SU1841093A2 |
МОНОИМПУЛЬСНАЯ РАДИОЛОКАЦИОННАЯ СИСТЕМА | 2006 |
|
RU2309430C1 |
Изобретение относится к устройствам, предназначенным для имитации частотно-временной структуры радиолокационного сигнала, отраженного от подстилающей поверхности, от одной или нескольких целей, и может быть использовано, например, для имитации ложных целей и помех для защиты присутствующих целей, а также для имитации эхо-сигналов радиолокаторов и радиовысотомеров. Параметры блестящих точек целей поступают из отдельного внешнего устройства. Изобретение позволяет отказаться от многовходового сумматора сигналов блестящих точек целей и набора модуляторов, сложных для реализации, при большом числе блестящих точек, особенно при цифровой обработке сигнала. Предлагаемый имитатор вместо сумматора содержит синхронизатор, один либо два коммутатора и общий модулятор. В варианте с двумя коммутаторами вместо набора модуляторов используется только один общий модулятор. Достигаемый технический результат - упрощение требований к аппаратуре имитатора как при аналоговой, так и при цифровой обработке сигнала без существенного ухудшения качества имитируемых портретов целей при зондировании преимущественно длительными сигналами. 7 ил.
Имитатор радиолокационной цели при зондировании преимущественно длительными сигналами, содержащий последовательно соединенные усилитель сигнала приемной антенны, устройство грубой задержки, устройство точной задержки, выходы которого соединены с первыми входами модуляторов набора модуляторов, отличающийся тем, что имитатор снабжен синхронизатором, коммутатором сигнала и дополнительным модулятором, причем с выхода синхронизатора на управляющий вход коммутатора сигнала подается сигнал выбора номера входного сигнала, поступающего на коммутатор с выхода одного из модуляторов набора модуляторов, на вторые входы модуляторов набора модуляторов подаются коэффициенты фазовой или частотной модуляции, на входы синхронизатора подаются коэффициенты амплитудной модуляции для пропорционального управления длительностью работы коммутатора сигнала, выход коммутатора сигнала соединен с первым входом дополнительного модулятора, на второй и третий входы дополнительного модулятора подаются общие коэффициенты фазовой и амплитудной модуляции, выходной сигнал дополнительного модулятора выдается на передающую антенну.
УСТРОЙСТВО ДЛЯ КРЕПЛЕНИЯ ОПОРНЫХ КОЛОНН САМОПОДЪЕМНОЙ ПЛАВУЧЕЙ ПЛАТФОРМЫ | 1996 |
|
RU2134740C1 |
ИМИТАТОР РАДИОЛОКАЦИОННОЙ ЦЕЛИ | 2008 |
|
RU2412449C2 |
ИМИТАТОР РАДИОЛОКАЦИОННОЙ ЦЕЛИ | 2008 |
|
RU2402036C2 |
ИМИТАТОР РАДИОЛОКАЦИОННОЙ ЦЕЛИ | 2006 |
|
RU2317563C1 |
RU 2066460 C1, 10.09.1996 | |||
US 8049663 B2, 01.11.2011 | |||
WO 2010014454 A1, 04.02.2010 | |||
KR 100996595 B1, 25.11.2010 | |||
АВИАЦИОННЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2011 |
|
RU2458235C1 |
JP 4712903 B2, 03.08.2011. |
Авторы
Даты
2014-01-20—Публикация
2011-12-05—Подача