СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНЫХ ПОРОШКОВ ИНТЕРМЕТАЛЛИДОВ ИТТРИЯ С КОБАЛЬТОМ Российский патент 2014 года по МПК C25C5/04 B22F9/06 

Описание патента на изобретение RU2514237C1

Изобретение относится к электрохимическому получению ультрадисперсных порошков интерметаллидов иттрия с кобальтом для создания магнитных материалов и ячеек хранения информации.

Известен способ получения наногранулированных порошков YCo5 механическим помолом отлитых сплавов и последующим их отжигом [Ning Tang, Zhongmin Chen, Yong Zhang, George C. Hadjipanayis, Fuming Yang. Nanograined YCos-based powders with high coercivity // Journal of Magnetism and Magnetic Materials 219 (2000), 173-177], включающий помол порошков в течение 4 часов и отжиг в течение минуты при температуре 950°С. Получаемые наночастицы YCo5 имеют линейные размеры около 30-40 нм.

Известен способ получения нанокристаллических порошков YCo5 путем механического помола отлитых сплавов с последующим вакуумным отжигом [J.L.Sanchez LI, J.T.Elizalde-Galindo, J.A.Matutes-Aquino. High coercivity nanocrystalline YCo5 powders produced by mechanical milling // Solid State Communications 127 (2003), 527-530], включающий механический помол отлитых сплавов Y-Co в течение 4 часов и вакуумный отжиг полученных порошков в течение 2,5 минут при температуре 800°С. Получаемые наночастицы YCo5 имеют линейные размеры около 12 нм.

Общим недостатком приведенных аналогов является высокая длительность и многостадийность процесса, а также энергозатратность. В процессе механического помола происходит загрязнение конечного продукта.

Наиболее близким является способ получения интерметаллидов иттрия и кобальта диффузионным насыщением металлического кобальта иттрием в галогенидных расплавах [А.В.Ковалевский, Н.Г.Илющенко, В.Н.Варкин, В.В.Сорокина. Диффузионное насыщение никеля и кобальта цирконием, лантаном и иттрием в галогенидных расплавах // Известия ВУЗов. Цветная металлургия, 15.10.1988, №5, с.20-22]. Этим способом можно получить только диффузионный слой в несколько десятков микрон в течение 4 ч. В качестве электролита используют расплав LiCl-KCl-YCl3, процесс ведут при температуре 700°С.

Недостатком прототипа является невозможность получения изотропных образцов интерметаллидов иттрия с кобальтом. Данным способом получаются монолитные образцы, которые необходимо дополнительно диспергировать для получения ультрадисперсного порошка. Также недостатком данного способа является ограничение скорости протекания процесса диффузией иттрия на поверхность металлического кобальта.

Задача изобретения - получение изотропных по составу ультрадисперсных порошков интерметаллидов иттрия с кобальтом, снижение длительности процесса.

Задача решается следующим образом.

Для электрохимического синтеза изотропных по составу ультрадисперсных порошков интерметаллидов иттрия с кобальтом используют электролит, содержащий хлорид натрия, хлорид калия и хлорид кобальта при следующем соотношении компонентов, мол.%:

KCl - 47,5-49,5

NaCl - 47,5-49,5CoCl2 - 1,0-5,0.

Электролиз ведут в двухэлектродной ячейке при температуре 700°С и плотностях катодного тока 2,6-3,2 А/см2, в среде четыреххлористого углерода, а в качестве источника иттрия используется растворимый иттриевый анод.

Процесс, протекающий при электрохимическом синтезе, описывается следующими реакциями:

Анодный процесс: Y0-3е-→Y3+

Переходя в окисленную, растворимую форму, ионы иттрия мигрируют к катоду.

Катодный процесс: Со2++2е-→Со0

Y3++3e-→Y0

Реакция взаимодействия Y+Co происходит на атомарном уровне:

nY+mCo→YnCom

Способ осуществляется следующим образом: вначале подготавливают используемые соли. Хлориды калия и натрия перекристаллизовывают и тщательно сушат в процессе вакуумирования при ступенчатом нагревании до 300-350°С. Затем проводят сушку хлорида кобальта в атмосфере четыреххлористого углерода, постепенно увеличивая температуру до 400°С.

Растворимый иттриевый анод в виде металлического штабика массой не более 1,2% от массы электролита помещают на дно стеклоуглеродного тигля, к которому подводится электрический ток. В зависимости от массы иттриевого штабика, рассчитывается количество хлорида кобальта, добавляемого в электролит, из условия ν(Y)/ν(CoCl2)=1/5. Хлориды кобальта, натрия и калия тщательно перемешивают и засыпают в стеклоуглеродный тигель.

Жидкий четыреххлористый углерод наливают на дно кварцевой ячейки и вакуумируют ячейку. В процессе нагревания печи четыреххлористый углерод испаряется, заполняя объем кварцевой ячейки. Электролиз ведут в гальваностатическом режиме при плотностях катодного тока 2,6-3,2 А/см2, в течение 40 мин, используя в качестве катода вольфрамовый стержень диаметром 0,3 см.

После проведения электролиза из расплава вынимают грушу интерметаллидов иттрия с кобальтом. После полного остывания до комнатной температуры грушу отмывают дистиллированной водой, после чего порошок высушивают в сушильном шкафу при температуре 150°С.

На Фиг.1 изображена морфология получаемых ультрадисперсных интерметаллических порошков иттрия с кобальтом по данным электронного сканирующего микроскопа.

На Фиг.2 изображен дисперсионный состав получаемых порошков по данным метода динамического светорассеяния.

На Фиг.3 изображен фазовый состав получаемых интерметаллидов по данным рентгенофазового анализа.

Пример 1. Процесс получения изотропных по составу, ультрадисперсных интерметаллидов иттрия и кобальта осуществляют в расплавленной смеси KCl-NaCl-CoCl2. Температура 700°С. Катод - вольфрамовый стержень диаметром 0,3 см. Источник иттрия - растворимый иттриевый анод массой 0,18 г. Плотность катодного тока 3,2 А/см2. Продолжительность электролиза 40 мин, после чего из расплава вынимают катод с осажденной на нем грушей интерметаллидов иттрия с кобальтом, отмывают грушу от хорошо растворимых в воде хлоридов и сушат полученный осадок. По данным рентгенофазового анализа катодный осадок состоит из интерметаллидов Co7Y3, Co5Y, Co3Y, Co2Y. По данным сканирующей электронной микроскопии и метода динамического светорассеяния ультрадисперсный порошок интерметаллидов иттрия и кобальта состоит из частиц гексаэдрической формы, со средним диаметром 50 нм.

Пример 2. Процесс получения изотропных по составу, ультрадисперсных интерметаллидов иттрия и кобальта осуществляют в расплавленной смеси KCl-NaCl-CoCl2. Температура 700°С. Катод - вольфрамовый стержень диаметром 0,3 см. Источник иттрия - иттриевый растворимый анод массой 0,18 г. Плотность катодного тока 2,7 А/см2. Продолжительность электролиза 40 мин, после чего из расплава вынимают катод с осажденной на нем грушей интерметаллидов иттрия и кобальта, отмывают грушу от хорошо растворимых в воде хлоридов и сушат полученный осадок. Катодный осадок состоит из интерметаллидов Co5Y, Co3Y, CoY, Co2Y со средним диаметром 143 нм.

Пример 3. Процесс получения изотропных по составу, ультрадисперсных интерметаллидов иттрия и кобальта осуществляют в расплавленной смеси KCl-NaCl-CoCl2. Температура 700°С. Катод - вольфрамовый стержень диаметром 0,3 см. Источник иттрия - иттриевый астворимый анод массой 0,29 г. Плотность катодного тока 2,6 А/см2. Продолжительность электролиза 40 мин, после чего из расплава вынимают катод с осажденной на нем грушей интерметаллидов иттрия с кобальтом, отмывают грушу от хорошо растворимых в воде хлоридов и сушат полученный осадок. Катодный осадок состоит из интерметаллидов Co5Y, Co3Y, CoY, Co2Y со средним диаметром 159 нм.

Техническим результатом является: получение изотропных по составу, ультрадисперсных порошков интерметаллидов иттрия с кобальтом, повышение скорости синтеза целевого продукта.

Похожие патенты RU2514237C1

название год авторы номер документа
Электролитический способ получения ультрадисперсного порошка двойного борида церия и кобальта 2018
  • Кушхов Хасби Билялович
  • Мукожева Радина Аслановна
  • Виндижева Мадзера Кадировна
  • Абазова Азида Хасановна
  • Маржохова Марьяна Хажмусовна
RU2695346C1
Электролитический способ получения наноразмерных порошков интерметаллидов лантана с кобальтом 2015
  • Кушхов Хасби Билялович
  • Виндижева Мадзера Кадировна
  • Мукожева Радина Аслановна
  • Калибатова Марина Нургалиевна
RU2661481C2
Электрохимический способ получения наноразмерных порошков интерметаллидов гольмия и никеля в галогенидных расплавах 2015
  • Кушхов Хасби Билялович
  • Карданова Ранетта Артуровна
RU2621508C2
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА ГЕКСАБОРИДА ГАДОЛИНИЯ 2011
  • Кушхов Хасби Билялович
  • Узденова Азиза Суфияновна
  • Мукожева Радина Аслановна
  • Виндижева Мадзера Кадировна
  • Салех Махмуд Мохаммед Али
RU2466217C1
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА ГЕКСАБОРИДА ЛАНТАНА 2011
  • Кушхов Хасби Билялович
  • Мукожева Радина Аслановна
  • Виндижева Мадзера Кадировна
  • Узденова Азиза Суфияновна
  • Тленкопачев Мурат Рамазанович
  • Нафонова Марина Нургалиевна
RU2477340C2
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА ГЕКСАБОРИДА ДИСПРОЗИЯ 2012
  • Кушхов Хасби Билялович
  • Узденова Азиза Суфияновна
  • Кахтан Абд Али Кадер
  • Узденова Лилия Андреевна
RU2510630C1
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ГЕКСАБОРИДА ЦЕРИЯ 2013
  • Кушхов Хасби Билялович
  • Мукожева Радина Аслановна
  • Виндижева Мадзера Кадировна
  • Абазова Азида Хасановна
RU2540277C1
Способ получения порошков интерметаллидов самария и кобальта 2015
  • Толстобров Иван Владимирович
  • Елькин Олег Валентинович
  • Бушуев Андрей Николаевич
  • Кондратьев Денис Андреевич
RU2615668C1
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА ГЕКСАБОРИДА ИТТРИЯ 2009
  • Кушхов Хасби Билялович
  • Шогенова Динара Леонидовна
RU2448044C2
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА ГЕКСАБОРИДА ГАДОЛИНИЯ 2012
  • Кушхов Хасби Билялович
  • Узденова Азиза Суфияновна
  • Салех Махмуд Мохаммед Али
  • Узденова Лилия Андреевна
RU2507314C1

Иллюстрации к изобретению RU 2 514 237 C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНЫХ ПОРОШКОВ ИНТЕРМЕТАЛЛИДОВ ИТТРИЯ С КОБАЛЬТОМ

Изобретение относится к электрохимическому получению ультрадисперсных порошков интерметаллидов иттрия с кобальтом для создания магнитных материалов и ячеек хранения информации. Порошок получают путем электролиза расплава при температуре 700°С и плотностях катодного тока 2,6-3,2 А/см2, в среде четыреххлористого углерода, где в качестве источника иттрия используется растворимый иттриевый анод. В качестве расплава используют электролит, содержащий хлорид натрия, хлорид калия и хлорид кобальта при следующем соотношении компонентов, мол.%: KCl - 47,5-49,5; NaCl - 47,5-49,5; CoCl2 - 1,0-5,0. Способ позволяет получять изотропные по составу ультрадисперсные порошки интерметаллидов иттрия и кобальта при повышении скорости синтеза целевого продукта. 3 ил., 3 пр.

Формула изобретения RU 2 514 237 C1

Способ получения ультрадисперсных порошков интерметаллидов иттрия с кобальтом, включающий электролиз расплава при температуре 700°С, отличающийся тем, что ведут электролиз расплава, содержащего хлорид калия, хлорид натрия и хлорид кобальта при плотности катодного тока 2,6-3,2 А/см2, в атмосфере четыреххлористого углерода с растворимым иттриевым анодом в качестве источника иттрия, масса которого не должна превышать 1,2% массы электролита, причем расплав содержит компоненты при следующем соотношении, мол.%:
KCl - 47,5-49,5
NaCl - 47,5-49,5
CoCl2 - 1,0-5,0

Документы, цитированные в отчете о поиске Патент 2014 года RU2514237C1

Х.Б.Кушхов отчет о НИР по теме: "Проведение центром коллективного пользования научным оборудованием "Рентгеновская диагностика материалов" научно-исследовательских работ в области разработки электрохимических технологий получения наноматериалов конструкционного и функционального назначения для машиностроения и энергетики, модифицирование

RU 2 514 237 C1

Авторы

Кушхов Хасби Билялович

Асанов Алим Магометович

Шогенова Динара Леонидовна

Даты

2014-04-27Публикация

2013-01-09Подача