СПОСОБ РЕГЕНЕРАЦИИ ИОНООБМЕННОЙ МЕМБРАНЫ Российский патент 2014 года по МПК B01D65/02 C25B1/46 

Описание патента на изобретение RU2515453C1

Изобретение относится к электрохимическим производствам, в частности к технологии получения хлора и гидроокисей щелочных металлов электролизом раствора хлорида щелочного металла в электролизере с синтетической ионообменной мембраной.

При мембранном электролизе используются дорогостоящие ионообменные мембраны. Известно, что эффективность работы синтетических ионообменных мембран снижается из-за обратимых и необратимых изменений в структуре мембраны под действием примесей, присутствующих в подаваемом рабочем растворе, поэтому в промышленном производстве для увеличения срока службы и снижения расходов производства для восстановления характеристик ионообменной мембраны осуществляют ее регенерацию.

В 1983 г. запатентован способ эксплуатации и регенерации ионообменных мембран, использующихся в процессе электролиза растворов хлоридов щелочных металлов (патент US №4381230, МПК С25В 1/34, 1983 г.).

Недостатком известного способа являются низкие значения выхода по току при использовании регенерированных мембран.

Известен способ регенерации мембраны для электролиза растворов хлоридов щелочных металлов, при котором ее извлекают из электролизера, погружают в этиловый спирт, затем испаряют растворитель, после чего мембрану погружают в раствор соляной кислоты и выдерживают при температуре 40-95°C (патент US №4174426, МПК В01D 15/04, C08F 14/18, С0В 5522, 1979 г.).

К недостатка известного способа можно отнести необходимость извлечения мембраны из электролизера для проведения операции регенерации. Практика показала, что извлечение мембран из электролизера через 2-3 года эксплуатации приводит их к разрушению, так как в местах уплотнений мембрана находится в сухом виде при температуре 90°C под действием давления и теряет свои механические свойства и форму. Также затруднен монтаж мембраны в электролизер после проведения регенерации.

Известен способ регенерации мембраны, заключающийся в восстановлении мембраны путем ее обработки раствором кислоты, например соляной, концентрацией 0,2-1 N и рН≤1, при подаче электрического тока в обратном направлении, что позволяет удалять с поверхности мембраны тяжелые металлы и оксиды металлов (патент JP 61263647, МПК B01J 49/00, 1986 г.).

К недостаткам известного способа можно отнести разрушение анодного и катодного покрытия, происходящее при пропускании электрического тока в обратном направлении и использовании соляной кислоты.

Известен способ регенерации катионообменных перфторированных мембран, использующихся для электролиза растворов хлоридов щелочных металлов, включающий электрохимическую обработку, при котором регенерируемую мембрану устанавливают в электролизере катодной стороной к аноду, а анодной - к катоду, и электрохимическую обработку ведут при подаче в анодное пространство раствора хлорида щелочного металла концентрацией 100-150 г/л и рН 2-3 и при подаче в катодное пространство щелочи концентрацией 10-50 г/л в течение 12-24 ч (патент SU 1717676, МПК С25В 13/08, 1992 г.).

Недостатком данного способа регенерации мембран является использование раствора хлорида щелочного металла концентрацией 100-150 г/л, приводящее к разрушению мембраны.

Наиболее близким к предлагаемому способу и принятым нами в качестве прототипа является способ регенерации перфторированной мембраны для электролиза раствора хлорида натрия, описанный в патенте (CN 1736567, МПК B01D 65/02, B01D 71/32, С25В 1/46, C25B 13/00, 2006), в котором мембраны последовательно обрабатывают минеральной кислотой с концентрацией 3-60% масс., водным раствором Na-EDTA (двунатривая соль этилендиаминтетрауксусной кислоты) с концентрацией 0,05-0,3 моль/дм3, промывают в ультразвуковой ванне и затем пропитывают водным раствором гидроксида натрия с концентрацией 0,1-2 моль/дм3.

К недостаткам известного способа можно отнести:

- извлечение мембраны из электролизера, приводящее к ее разрушению;

- большие затраты рабочего времени на извлечение мембраны;

- использование дополнительных аппаратов для регенерации.

Задачей предложенного изобретения является создание простого способа регенерации синтетических ионообменных мембран, снижение материальных затрат за счет увеличения срока службы мембраны.

Указанная задача решается тем, что для увеличения срока службы синтетических ионообменных мембран предложен способ регенерации мембран для электролиза растворов хлоридов щелочных металлов обработкой кислотой и органическим соединением, отличающийся тем, что регенерацию мембраны проводят путем подачи в электродные камеры электролизера раствора, состоящего из лимонной кислоты 0,5-20% масс., триэтилсилилметакриловой кислоты 0,1-1,5% масс., этилового спирта 20-60% масс. и воды 18,5-79,4% масс. с температурой раствора 20-90°C при поддержании напряжения на электролизере 1,3-2,4 В без извлечения мембраны из электролизера.

Процесс осуществляется следующим образом.

Из перфторированной ионообменной мембраны Асиплекс F-6801 фирмы Asahi Kasei, проработавшей в процессе электролиза раствора хлорида натрия для получения хлора и каустической соды в течение 2 лет 4 месяцев, вырезают образец диаметром 40 мм, который устанавливают в ячейку лабораторного мембранного электролизера между анодной и катодной полуячейками и стягивают болтовыми соединениями.

Мембрана представляет собой двухслойную пленку толщиной 150 мкм, армированную тканью из политетрафторэтилена, первый слой, толщиной 120 мкм, состоящий из сополимера перфторвинилового эфира и тетрафторэтилена, имеет обменные группы R F S O 3 , второй слой, толщиной 30 мкм, состоит из сополимера перфторвинилового эфира и тетрафторэтилена и имеет обменные группы R F C O O , где RF - фторированный сополимер.

Рабочая поверхность мембраны в электролизере составляет 8,04 см2. Анодная полуячейка выполнена из титана, снабжена сетчатым титановым анодом с покрытием смешанными окислами рутения, иридия и титана (RuO2, IrO2 и TiO2) и токоподводом, входным и выпускным патрубками. Катодная полуячейка выполнена из стали, снабжена сетчатым стальным катодом и токоподводом, входным и выпускным патрубками. Расстояние между анодом и катодом в ячейке лабораторного мембранного электролизера в собранном виде составляет 2 мм.

В анодную полуячейку лабораторного электролизера подают раствор хлорида натрия с концентрацией 300 г/дм3, очищенный от загрязнений на ионообменной смоле полиамфолитного типа, в катодную полуячейку первоначально заливают раствор едкого натра с концентрацией 32% масс. и подают дистиллированную воду для поддержания указанной концентрации.

Токовую нагрузку устанавливают и поддерживают на уровне, соответствующем плотности тока 5,0 кА/м2, температуру электролиза поддерживают на уровне 89±1°C. Из анодной полуячейки электролизера выводят газообразный хлор и раствор хлорида натрия с концентрацией 200 г/дм3. Из катодной полуячейки выводят газообразный водород и раствор едкого натра с концентрацией 32% масс.

Электролиз ведут 2 часа при контроле электрического напряжения на ней. После электролиза титрованием определяют количество образовавшейся щелочи и, сравнивая с количеством прошедшего электричества, рассчитывают выход по току щелочи как отношение количества образовавшейся при электролизе щелочи к количеству щелочи, определенного по закону Фарадея из количества прошедшего электричества. Непосредственно после работы определяют характеристики мембраны: выход по току составил 86%, напряжение на электролизере - 3,45 В. Далее образец мембраны подвергают регенерации.

Пример 1 (прототип)

Для регенерации используют перфторированную ионообменную мембрану Асиплекс F-6801 фирмы Asahi Kasei, проработавшую в процессе электролиза раствора хлорида натрия для получения хлора и каустической соды в течение 2 лет 4 месяцев. Напряжение на электролизере 3,45 В, выход по току 86%.

Для восстановления мембрану извлекают из электролизера и обрабатывают водным раствором соляной кислоты, который содержит 10% масс. HCl, при температуре 80°C в течение 12 часов, далее ее подвергают ультразвуковой обработке при частоте 60 Гц в течение 4 часов, затем обрабатывают водным раствором 0,2 моль/дм3 EDTA (двунатриевая соль этилендиаминтетрауксусной кислоты) при 25°C в течение 24 часов, после чего мембрану выдерживают в водном растворе едкого натра с концентрацией 1 моль/дм3 в течение 24 часов. После регенерации проводят определение характеристик мембраны.

Выход по току составил 93,5%, напряжение на электролизере 3,24 В.

Пример 2 (по предлагаемому способу)

Ионнообменную мембрану Асиплекс F-6801 фирмы Asahi Kasei, проработавшую 2 года 4 месяца в процессе электролиза хлорида натрия, не извлекая из электролизера, подвергают обработке, подавая в анодное и катодное пространство электролизера раствор, содержащий лимонную кислоту 10% масс., триэтилсилилметакриловую кислоту (ТЭСМАК) 1,0% масс., этиловой спирт 40% масс. и воду 49% масс., при этом температуру раствора поддерживают на уровне 80°C, напряжение на электролизере 1,3 В. Регенерацию ведут в течение 16 часов. После окончания регенерации из анодной и катодной ячеек сливают регенерирующий раствор.

Для определения характеристик восстановленной мембраны проводят электролиз хлорида натрия. Выход по току составляет 95,0%, напряжение на электролизере - 3,18 В.

Пример 3

В опытах 3-23 восстановление ионообменной мембраны проводят аналогично примеру 2, изменяя при этом значение напряжения на электролизере, количество реагентов, содержащихся в регенерирующем растворе.

Результаты опытов приведены в таблице.

Параметры регенерации мембран и характеристики регенерированных мембран № опыта Параметры процесса регенерации мембраны Характеристика процесса мембранного электролиза с использованием регенерированной мембраны Состав регенерирующего раствора, % масс. Температура, °C Время, ч Напряжение на электролизере, В Выход по току щелочи, % Напряжение на электролизере Лимонная кислота Триэтилсилилмет-
акриловая кислота
Этиловый спирт Вода
1 По прототипу 93,5 3,24 2 10,0 1,0 40,0 49,0 88 16 2,0 95,0 3,18 3 0,7 0,5 38,8 60 88 16 2,0 94,7 3,18 4 0,4 0,5 38,8 60,3 80 16 2,0 93,5 3,24 5 0,5 0,5 38,8 60,2 80 16 2,0 93,6 3,22 6 20,0 0,5 38,8 40,7 80 16 2,0 95,2 3.15 7 22,0 0,5 38,8 38,7 80 16 2,0 95,2 3,15 8 0,7 0,1 38,8 60,4 80 16 2,0 93,6 3,23 9 0,7 0,08 38,8 60,42 80 16 2,0 93,2 3,25 10 0,7 1,5 38,8 59,0 80 16 2,0 94,9 3,16 11 0,7 2,0 38,8 58,5 80 16 2,0 94,9 3,16 12 0,7 0,5 15,0 83,8 80 16 2,0 92,5 3,26 13 0,7 0,5 20,0 78,8 80 16 2,0 93,6 3,23 14 0,7 0,5 60,0 38,8 80 16 2,0 93,6 3,22 15 0,7 0,5 70,0 28,8 80 16 2,0 93,3 3,25 16 0,7 0,5 38,8 60,0 18,0 16 2,0 93,0 3,28 17 0,7 0,5 38,8 60,0 20,0 16 2,0 93,5 3,22 18 0,7 0,5 38,8 60,0 90 16 2,0 94,8 3,17 19 0,7 0,5 38,8 60,0 95 16 2,0 92,5 3,17 20 0,7 0,5 38,8 60,0 80 16 1,1 93,3 3,28 21 0,7 0,5 38,8 60,0 80 16 1,3 94,5 3,20 22 0,7 0,5 38,8 60,0 80 16 2,4 94,6 3,19 23 0,7 0,5 38,8 60,0 80 16 2,9 88,5 3,40

Результаты опытов по регенерации мембран, приведенные в таблице, показывают, что использование регенерирующего раствора, содержащего лимонную кислоту, триэтилсилилметакриловую кислоту, этиловый спирт и воду при одновременном поддержании напряжения на электролизере и температуры при регенерации в заявляемых пределах значений позволяет повысить эффективность электролиза с регенерированными мембранами (увеличить выход по току и снизить напряжение на электролизере) по сравнению со способом по прототипу.

Содержание в регенерационном растворе лимонной кислоты менее 0,5% масс., триэтилсилилметакриловой кислоты менее 0,1% масс., этилового спирта менее 18,5% масс. или более 60% масс., воды менее 18,5% масс., а также поддержание напряжения на электролизере при регенерации менее 1,3 В или более 2,4 В и температуры менее 20°С или более 90°C снижает эффективность регенерации и не обеспечивает преимуществ в показателях электролиза по сравнению со способом по прототипу.

Повышение концентрации лимонной кислоты выше 20% масс. и триэтилсилилметакриловой кислоты выше 1,5% масс. не приводит к улучшению показателей электролиза по сравнению с достигнутыми в предложенном способе значениями, но вызывает повышенный расход реагентов.

Предложенный способ, проводимый без разборки электролизера и перемонтажа мембраны, позволяет упростить процесс регенерации, исключить дополнительные стадии и оборудование для их осуществления, предотвратить разрушение мембран, анодного и катодного покрытий.

Похожие патенты RU2515453C1

название год авторы номер документа
Способ регенерации катионообменных перфторированных мембран 1988
  • Бобрин Владимир Степанович
  • Львович Флорентий Исерович
  • Мазанко Анатолий Федорович
  • Отрошко Галина Викторовна
SU1717676A1
СПОСОБ СНИЖЕНИЯ СОДЕРЖАНИЯ ХЛОРИДА В СИСТЕМЕ РЕГЕНЕРАЦИИ ХИМИЧЕСКИХ РЕАГЕНТОВ ДЛЯ ВАРКИ ЦЕЛЛЮЛОЗЫ 1993
  • Ханс Линдберг[Se]
  • Биргитта Сундблад[Se]
RU2095504C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ КОМПЛЕКСООБРАЗУЮЩИХ РЕАГЕНТОВ В ВОДНЫХ РАСТВОРАХ 2001
  • Косяков В.Н.
  • Яковлев Н.Г.
  • Велешко И.Е.
  • Хрубасик Альфред
RU2201401C1
СПОСОБ ПОЛУЧЕНИЯ ВИНИЛИДЕНХЛОРИДА 2005
  • Шаванов Станислав Сергеевич
  • Бикбулатов Игорь Хуснутович
  • Быковский Николай Алексеевич
  • Садыков Нургали Басырович
  • Фанакова Надежда Николаевна
  • Исламутдинова Айгуль Акрамовна
  • Музафарова Лилия Рафиковна
RU2291850C1
Способ регенерации медно-хлоридного травильного раствора 2018
  • Колесников Владимир Александрович
  • Губин Александр Федорович
  • Кругликов Сергей Сергеевич
  • Кругликова Елена Сергеевна
  • Некрасова Наталия Евгеньевна
  • Тележкина Алина Валерьевна
  • Кузнецов Виталий Владимирович
  • Филатова Елена Алексеевна
  • Одинокова Ирина Вячеславовна
RU2677583C1
СПОСОБ СИНТЕЗА ГИДРОКСИДА ОНИЕВЫХ СОЛЕЙ 2010
  • Агупов Владимир Кузьмич
  • Чайка Михаил Юрьевич
  • Беседин Владимир Викторович
  • Глотов Антон Валерьевич
RU2413796C1
Способ получения хлора и щелочи 1975
  • Пол Рафаэль Ресник
  • Вальтер Густав Грот
SU1106448A3
Способ получения хлора и гидро-ОКиСи НАТРия 1976
  • Маоми Секо
  • Синсаку Огава
  • Рейдзи Такемура
SU818493A3
ЭЛЕКТРОЛИЗЕР, СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА ОСНОВАНИЯ И РАСТВОРА, СОДЕРЖАЩЕГО КИСЛОТУ, И СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА ОСНОВАНИЯ И РАСТВОРА ЧИСТОЙ КИСЛОТЫ 1992
  • Карло Траини[It]
  • Джузеппе Фаита[It]
RU2107752C1
СПОСОБ ПОЛУЧЕНИЯ МОНОГИДРАТА ГИДРОКСИДА ЛИТИЯ ВЫСОКОЙ СТЕПЕНИ ЧИСТОТЫ ИЗ МАТЕРИАЛОВ, СОДЕРЖАЩИХ КАРБОНАТ ЛИТИЯ ИЛИ ХЛОРИД ЛИТИЯ 2019
  • Дудин Михаил Александрович
  • Петров Денис Александрович
RU2751710C2

Реферат патента 2014 года СПОСОБ РЕГЕНЕРАЦИИ ИОНООБМЕННОЙ МЕМБРАНЫ

Изобретение относится к электрохимическим производствам, в частности к технологии получения хлора и гидроокисей щелочных металлов электролизом раствора хлорида щелочного металла в электролизере с синтетической ионообменной мембраной. Регенерацию ионообменной мембраны, применяемой для получения хлора и гидроокисей щелочных металлов, осуществляют путем подачи в электродные камеры электролизера раствора, состоящего из лимонной кислоты 0,5-20% масс., триэтилсилилметакриловой кислоты 0,1-1,5% масс., этилового спирта 20-60% масс. и воды 18,5-79,4% масс. с температурой раствора 20-90°C при поддержании напряжения на электролизере 1,3-2,4 В без извлечения мембраны из электролизера. Технический результат - увеличение срока службы мембраны без дополнительных затрат на ее извлечение и регенерацию. 1 табл., 2 пр.

Формула изобретения RU 2 515 453 C1

Способ регенерации ионообменной мембраны для электролиза растворов хлоридов щелочных металлов обработкой кислотой и органическим соединением, отличающийся тем, что регенерацию мембраны проводят путем подачи в электродные камеры электролизера раствора, состоящего из лимонной кислоты 0,5-20% масс., триэтилсилилметакриловой кислоты 0,1-1,5% масс., этилового спирта 20-60% масс. и воды 18,5-79,4% масс. с температурой раствора 20-90°С при поддержании напряжения на электролизере 1,3-2,4 В без извлечения мембраны из электролизера.

Документы, цитированные в отчете о поиске Патент 2014 года RU2515453C1

Способ совместного фильтрования песковых и шламовых продуктов обогащения и устройство для его осуществления 1989
  • Ходаковский Иван Петрович
  • Шаститко Татьяна Степановна
  • Любущенко Александр Дмитриевич
  • Игумнов Владимир Феодосьевич
  • Фомин Николай Иванович
  • Поляков Анатолий Ефимович
SU1736567A1
Способ регенерации катионообменных перфторированных мембран 1988
  • Бобрин Владимир Степанович
  • Львович Флорентий Исерович
  • Мазанко Анатолий Федорович
  • Отрошко Галина Викторовна
SU1717676A1
SU 1811187 A1, 27.05.2000
US 4174426 A, 13.11.1979

RU 2 515 453 C1

Авторы

Френкель Аида Сергеевна

Подойницин Олег Владимирович

Стороженко Павел Аркадьевич

Флид Марк Рафаилович

Ромашин Олег Петрович

Карпова Татьяна Викторовна

Даты

2014-05-10Публикация

2012-12-13Подача