Изобретение относится к области исследования прочностных свойств металлов и касается оценки их деформационно-прочностных характеристик путем приложения к ним растягивающих нагрузок.
После образования шейки при растяжении образца в районе его минимального сечения формируется сложное, неоднородное по поперечному сечению напряженное состояние, что приводит к завышению напряжения и занижению деформации. Для приведения объемного напряженного состояния к линейному (свойственного образцу до образования шейки) вводят поправочный коэффициент, учитывающий жесткость напряженного состояния.
Известен способ определения характеристик прочности и текучести конструкционных материалов, на основании которого изготавливают образец, а затем нагружают его вплоть до разрушения, регистрируют диаграмму в координатах «усилие - деформация», максимальное растягивающее усилие и продольную относительную пластическую деформацию отрыва, по которым судят, в частности, об условных и истинных напряжениях прочности материала (Авторское свидетельство СССР №1747989 А1, кл G01N 3/00. опубл. БИ №26 15.07.92).
Недостатком этого способа является отсутствие учета влияния вида напряженного состояния, связанного с сосредоточенной деформацией в шейке, на характеристики прочности и пластичности, что приводит к искажению результатов по определению характеристик прочности и пластичности.
Известен также способ определения характеристик прочности и текучести конструкционных материалов при различной степени объемной деформации, когда образец нагружают до разрушения, регистрируют диаграмму «усилие - деформация», максимальное растягивающее усилие, продольную относительную пластическую деформацию отрыва и по ним с учетом значений твердости судят об условном и истинном напряжении прочности материала (Авторское свидетельство СССР №1747989 А1, М кл. G01N 3/00 15.07.92). Однако способ не дает информации о характеристиках пластичности и влиянии напряженного состояния в шейке при испытании пластичных металлов, т.е. сопротивление большим пластическим деформациям.
Решением, наиболее близким к предложенному по своей сущности и принятому за прототип, является способ определения максимальных истинных напряжений и деформаций, который состоит в том, что при растяжении образца на стадии шейкообразования регистрируют усилие деформирования F и изменение диаметра d, растягивают образец до деформации, не вызывающей в шейке существенных геометрических изменений, влияющих на напряженное состояние в минимальном сечении шейки, разгружают образец, проводят переточку шейки на конусообразную форму с минимальным углом наклона образующей конуса, что снижает до минимально возможных значений параметр жесткости напряженного состояния в деформируемой зоне, обеспечивающий закрепление деформации в области шейки, измеряют обусловленную усилием деформацию ψ в минимальном сечении шейки, по которой затем расчетным путем определяют зависимость истинного напряжения S от степени истинной деформации е, повторяют аналогичную процедуру испытаний вплоть до разрушения образца. Величины истинных напряжений и деформаций при разрыве принимают за максимальные напряжения и деформации (Патент РФ 2319944 С1, кл. G01N 3/00 19.06.2006).
Недостатком способа является высокая трудоемкость, связанная с необходимостью периодической установки образца в центрах токарного станка и обеспечения соосности его установки относительно геометрии формирующейся шейки, обеспечения конусообразной формы обработки с расчетом минимального угла наклона образующих конуса. При этом эксцентриситет приложения нагрузки или неоднородность свойств вызывают нарушение соосности, не позволяющее выполнить соосную с шейкой обточку, что приводит к искажению экспериментальных результатов.
Таким образом, задача состоит в устранении отмеченных недостатков. Техническим результатом заявленного изобретения является упрощение способа определения максимальных истинных напряжений и деформаций за счет исключения сложных процедур многократной токарной обработки шейки при сохранении достоверности полученных результатов.
Указанный технический результат достигается тем, что в способе определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающемся в том, что осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимости истинного напряжения (S) от степени истинной деформации (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения Se путем введения поправочного коэффициента К, строят скорректированную истинную диаграмму деформирования; определяют максимальную истинную деформацию при разрыве emax с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле
где d0 - исходный диаметр образца;
dk - минимальный диаметр образца при разрыве;
η - параметр жесткости напряженного состояния, определяемый по формуле:
Rk - продольный радиус шейки непосредственно перед разрывом образца;
затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле
где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,
а максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации emax, истинных напряжений Se,k и деформаций ek в момент разрыва образца
Существенным отличием предлагаемого способа является то, что величины максимальных истинных напряжений и максимальных истинных деформаций определяют по изменению параметров шейки с учетом новых взаимосвязей, установленных между максимальной истинной деформацией и параметрами шейки, определяют параметр деформационного упрочнения при степенной аппроксимации истинной диаграммы деформирования на стадии предразрушения, что позволяет полностью исключить сложные процедуры периодической токарной обработки контура шейки, предусмотренные прототипом, при сохранении достоверности полученных результатов.
В результате испытание образца по предложенному способу дает возможность определить максимальные истинные напряжения и деформации, приведенные к линейному напряженному состоянию.
Способ иллюстрируется нижеприведенным чертежом, на котором представлены: 1 - диаграмма истинных напряжений при стандартных испытаниях; 2 - диаграмма, скорректированная по напряжениям на линейное напряженное состояние; 3 - касательная к скорректированной диаграмме растяжения в точке предразрушения; угол αсек, тангенс которого численно равен секущему модулю; угол αкас, тангенс которого численно равен касательному модулю; точка Д на диаграмме деформирования, отмеченная по полученным значениям номинальных истинных напряжений Smax и деформаций emax.
Способ определения максимальных истинных напряжений и деформаций реализуется следующим образом (на примере цилиндрического образца).
Исходные значения характеристик прочности и пластичности материала определяют на основе предварительных испытаний на растяжение образцов, форма и размеры которых предусмотрены ГОСТ 1497-84. Режимы проведения испытаний назначаются согласно упомянутому ГОСТу. В процессе испытания регистрируют усилие деформирования (F), соответствующее ему значение минимального диаметра (d), рассчитывают величину условных напряжений (σ) и деформации (ε) по формулам,
истинного напряжения S и истинной деформации e по формулам:
где A0 и А - начальная и текущая площади поперечного сечения образца
Испытания образца по предлагаемому способу проводят в несколько этапов (ступеней), задавая на каждом из них определенную степень деформации и контролируя ее по изменению минимального диаметра образца. Первоначально образец с исходным диаметром d0 устанавливают в захваты разрывной машины. Производят растяжение образца с записью машинной диаграммы, нагружая его до максимальной нагрузки Fmax, соответствующей σB, а затем разгружают. Измеряют диаметр di поперечного сечения образца и вычисляют истинные напряжение S и относительное удлинение е по формулам (2).
На последующих ступенях нагружения вплоть до разрушения деформация локализуется в области шейки, в минимальном сечении которой определяют диаметр di и продольный радиус шейки Ri. Истинные напряжения S и деформации е также определяют по формулам (2). Строят истинную диаграмму деформирования S □ е. В минимальном сечении шейки образца формируется объемное напряженное состояние, которое, как показано Бриджменом П. (Исследование больших пластических деформаций и разрыва. - М.: Либкор, 2010), а также Давиденковым Н.Н. и Спиридоновой Н.И. (Заводская лаборатория. - 1946 г. - №6. - С.588-592), влияет на величину истинных напряжений, завышая их. Для приведения истинных напряжений к линейному напряженному состоянию, т.е. для исключения влияния сложного напряженного состояния на величину истинных напряжений, вводят корректирующий коэффициент К
находят скорректированное (приведенное к линейному напряженному состоянию) истинное напряжение Se
и строят скорректированную истинную диаграмму деформирования в координатах Se □ е.
Объемное напряженное состояние, формируемое в шейке, также влияет на величину пластических деформаций. Приведение к линейному напряженному состоянию максимальных значений истинных деформаций осуществляется по формуле:
где η - параметр жесткости напряженного состояния при формировании шейки, который определяется по формуле:
Для оценки максимальных истинных напряжений, соответствующих emax, принимается степенная аппроксимация истинной диаграммы деформирования (ГОСТ 25.503-97 «Методы механических испытаний металлов. Метод испытаний на сжатие», £646-00 «Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials»).
Определение показателя деформационного упрочнения n проводится расчетно-графическим методом путем обработки истинной диаграммы деформирования в соответствии с выражением
где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца. Величина максимальных истинных напряжений рассчитывается с учетом определенных выше максимальной истинной деформации emax, параметра деформационного упрочнения n, степенной аппроксимации диаграммы деформирования, истинных напряжений Se,k и деформаций ek, соответствующих моменту разрыва образца, по формуле:
Проведена экспериментальная проверка способа.
Испытывались пятикратные цилиндрические образцы из титанового сплава 5В с рабочей длиной 40 мм диаметром 10 мм на разрывной машине УМЭ-ЮТМ с записью диаграммы в координатах «нагрузка F - удлинение Δl». Испытание на растяжение проведено в соответствии с ГОСТ 1497-84. Дополнительно в процессе испытания на стадии шейкообразования проводились периодические разгрузки образца с целью измерения диаметра в минимальном сечении шейки di и продольного радиуса шейки Ri, по результатам которых была построена истинная диаграмма деформирования в координатах «истинные напряжения S - истинные (логарифмические) деформации е» (кривая 1). Затем строится приведенная к линейному напряженному состоянию по напряжениям истинная диаграмма деформирования «истинные напряжения Se - истинные деформации е» (кривая 2). Se определяли по формуле
где
Результаты расчетов приведены в таблице 1.
Моменту разрушения соответствовали истинные напряжения Se,k и истинные деформации ek.
Определение максимальных истинных деформаций по предложенному способу начинаются с установления жесткости напряженного состояния, предшествующего моменту разрыва образца. С этой целью разорванный образец устанавливается в центрах установочного стола микроскопа БМИ-1Ц и измеряются диаметр образца в минимальном сечении dk=7,93 мм и продольный радиус шейки Rk=8 мм. Определяется параметр жесткости напряженного состояния η по формуле
Затем с учетом этого параметра определяется величина максимальных истинных деформаций emax, приведенная к линейному напряженному состоянию:
Для определения максимальных истинных напряжений Smax устанавливается показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования. С этой
целью на диаграмме деформирования проводится касательная (прямая 3) к кривой деформирования в точке, соответствующей моменту разрыва образца (диаграмма 2, точка А). Из точки А опускается перпендикуляр до пересечения с осью абсцисс (точка В). Из начала координат проводится луч, параллельный касательной до пересечения с отрезком АВ (точка C). За показатель деформационного упрочнения принимается отношение отрезка ВС к АС:
Максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, максимальной деформации emax в момент разрыва образца, истинных напряжений Se,k и истинных деформаций ek по формуле
Определенные по предлагаемому способу значения максимальных истинных напряжений и максимальных истинных напряжений отмечены на диаграмме точкой Д: Smax=1157 МПа, emax=56%.
Проведено определение Smax и emax по прототипу. Результаты расчетов приведены в таблице 2.
Результаты расчетов по прототипу (Smax.прот.=1150 МПа, emax.прот.=55,7%) и заявленному способу (Smax=1157 МПа, emax=56%) практически совпадают.
Данный способ позволил определить максимальные истинные напряжения и максимальные истинные деформации, приведенные к линейному напряженному состоянию, исключив высокую трудоемкость испытания по прототипу, связанную с необходимостью периодической переточки формы образующейся шейки и обеспечения конусообразной формы обработки с расчетом минимального угла наклона образующей конуса.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНЫХ ИСТИННЫХ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ | 2006 |
|
RU2319944C1 |
Способ определения усталостной поврежденности материала | 1989 |
|
SU1661621A1 |
СПОСОБ ПОСТРОЕНИЯ ДИАГРАММЫ ПРЕДЕЛЬНЫХ ДЕФОРМАЦИЙ ЛИСТОВОГО МАТЕРИАЛА | 2015 |
|
RU2591294C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ РЕСУРСА РАБОТОСПОСОБНОСТИ МЕТАЛЛОВ | 2004 |
|
RU2261436C1 |
Способ испытания листовых материалов на осесимметричную вытяжку | 2017 |
|
RU2659458C1 |
Способ испытания листовых материалов на осесимметричную вытяжку | 2017 |
|
RU2655634C1 |
Способ испытания листовых материалов на осесимметричную вытяжку | 2017 |
|
RU2655636C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СВОЙСТВ ДЕФОРМИРОВАНИЯ | 2013 |
|
RU2537341C2 |
Способ определения ресурса стальных изделий | 2019 |
|
RU2706106C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ РАДИУСА КРИВИЗНЫ ШЕЙКИ И МИНИМАЛЬНОГО ДИАМЕТРА ОБРАЗЦА ПРИ РАСТЯЖЕНИИ | 2021 |
|
RU2785539C1 |
Изобретение относится к области исследования прочностных свойств металлов и касается оценки их деформационно-прочностных характеристик путем приложения к ним растягивающих нагрузок. Сущность: осуществляют растяжение образца, регистрируют усилие деформирования, минимальный диаметр образца, продольный радиус шейки, по которым затем расчетным путем определяют зависимость истинного напряжения от степени истинных деформаций, определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения путем введения поправочного коэффициента снижения напряжений, строят скорректированную истинную диаграмму деформирования. Определяют максимальную истинную деформацию при разрыве с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва. Определяют показатель деформационного упрочнения расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца, а максимальные истинные напряжения находят с учетом полученного значения показателя деформационного упрочнения, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации, истинных напряжений и деформаций в момент разрыва образца. Технический результат: упрощение способа определения максимальных истинных напряжений и деформаций за счет исключения сложных процедур многократной токарной обработки шейки при сохранении достоверности полученных результатов. 1 ил., 2 табл.
Способ определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающийся в следующем: осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимость истинного напряжения (S) от степени истинных деформаций (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения Se путем введения поправочного коэффициента снижения напряжений К, строят скорректированную истинную диаграмму деформирования, отличающийся тем, что определяют максимальную истинную деформацию при разрыве emax с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле
где d0 - исходный диаметр образца;
dk - минимальный диаметр образца при разрыве;
η - параметр жесткости напряженного состояния, определяемый по формуле:
Rk - продольный радиус шейки непосредственно перед разрывом образца;
затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле
где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,
а максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации emax, истинных напряжений Se,k и деформаций ek в момент разрыва образца по формуле
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНЫХ ИСТИННЫХ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ | 2006 |
|
RU2319944C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ РАЗРУШЕНИЯ | 2007 |
|
RU2402010C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СВОЙСТВ ДЕФОРМИРОВАНИЯ | 1991 |
|
RU2020013C1 |
KR 948035 B1 19.03.2010 |
Авторы
Даты
2014-05-20—Публикация
2012-12-17—Подача