СПОСОБ ОЧИСТКИ ВОДЫ И ВОДНЫХ РАСТВОРОВ ОТ АНИОНОВ И КАТИОНОВ Российский патент 2014 года по МПК C02F1/46 

Описание патента на изобретение RU2519383C1

Изобретение относится к очистке воды и водных растворов от анионов и катионов и может быть использовано для очистки природных вод, стоков металлургической, машиностроительной и других отраслей промышленности.

Известны способы очистки воды и водных растворов, представляющие собой электрокоагуляционную обработку, обеспечивающие степень очистки 90-95% [Смирнов Г.Н., Генкин В.Е. Очистка сточных вод в процессах обработки металлов. М.: Металлургия, 1989. 224 с.]. Их недостатками являются применение постоянного электрического тока, что требует дополнительных устройств преобразования переменного электрического тока, и необходимость аэрирования сточных вод после электрокоагуляционной обработки до их осветления.

Известны способы коагуляционной очистки воды и водных растворов, осуществляемые путем добавления в раствор комплексообразователя с последующим отстаиванием [Смирнов Г.Н., Генкин В.Е. Очистка сточных вод в процессах обработки металлов. М.: Металлургия, 1989. 224 с.; Технические записки по проблемам воды / К.Барак [и др.]; под ред. Т.А.Карюхиной, И.Н.Чурбановой. М.: Стройиздат, 1983. 607 с.]. Недостатком этих способов является большой расход реагентов и невысокая степень очистки.

Известен способ очистки воды и водных растворов от ионов металлов путем электролиза с использованием нерастворимых электродов при наложении переменного синусоидального напряжения [Способ электрохимической очистки воды и водных растворов от ионов тяжелых металлов. Авт. Св. СССР №1724591, кл. C02F 1/46, 1991]. Этот способ взят за прототип. Главный недостаток данного способа - невысокая степень очистки и значительные энергозатраты (1,5-2 (кВт·ч)/м3).

Задача изобретения - повышение степени очистки и снижение удельных энергозатрат.

Это достигается тем, что очистку воды и водных растворов переменным асимметричным током проводят электролизом с использованием пар нерастворимых разнородных электродов и барботированием раствора воздухом, после чего вводят в раствор комплексообразователь и проводят отстаивание.

В качестве комплексообразователя применяют соль железа двухвалентного FeSO4 [Гликина Ф.Б. Химия комплексных соединений: учеб. пособие для вузов. М.: Просвещение, 1982. 160 с.]. Соотношение начальных концентраций комплексообразователя и очищаемого иона - 5:1.

Барботирование очищаемого раствора проводят при условии, что диаметр пузырьков воздуха должен быть больше расстояния между электродами.

Время отстаивания водного раствора 8 суток.

Экспериментальные данные показали, что дальнейшее повышение соотношения начальных концентраций и времени отстаивания не приводит к существенному увеличению степени очистки, а при соотношении начальных концентраций меньше 5:1 и времени отстаивания менее 8 суток степень очистки значительно ниже. При барботировании раствора воздухом, если диаметр пузырьков меньше расстояния между электродами, степень очистки уменьшается.

Для реализации предлагаемого способа процесс очистки проводят в электролизере из чередующихся электродов, выполненных в виде пластин. Материал электродов: нержавеющая сталь 12Х18Н10Т, титановый сплав ОТ 4-0. Температура воды 20-25°C. Расстояние между электродами 12 мм. Объем заливаемого водного раствора 1 литр. Продолжительность электролиза 10 минут при силе тока 0,5 А и напряжении на клеммах электродов 4,1 В.

Обработке подвергались водные растворы, содержащие ионы кадмия (II), меди (II), никеля (II) и хрома (VI). Начальная концентрация каждого иона в растворе 0,5 мг/л.

Пример 1. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 10 мг/л. Время отстаивания 8 суток.

Степень очистки определялась по формуле, %:

Y = ( C o C к С о ) 100

где Сo, Ск - начальная и конечная концентрации очищаемого иона металла, мг/л.

Удельные энергозатраты W определялись по формуле, (кВт·ч)/м3:

W = I U τ V 10 3

где I - сила тока, А;

U - напряжение на клеммах электродов, В;

τ - продолжительность электролиза, ч;

V - объем заливаемого водного раствора, м3;

10-3 - переводной коэффициент из Вт в кВт.

Степени очистки водного раствора равны: для никеля YNi=34,44%, для кадмия YCd=63,44%, для меди YCu=99,56%, для хрома YCr=99,98% и для железа YFe=99,28%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 2. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 6:1. Начальная концентрация иона-комплексообразователя в растворе была равна 12 мг/л. Время отстаивания 8 суток.

Степени очистки водного раствора равны: для никеля YNi=34,62%, для кадмия YCd=63,74%, для меди YCu=99,63%, для хрома YCr=99,99% и для железа YFe=99,88%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 3. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 2,5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 5 мг/л. Время отстаивания 8 суток.

Степени очистки водного раствора равны: для никеля YNi=24,23%, для кадмия YCd=46,75%, для меди YCu=81,23%, для хрома YCr=74,32% и для железа YFe=92,21%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 4. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 10 мг/л. Время отстаивания 10 суток.

Степени очистки водного раствора равны: для никеля YNi=35,24%, для кадмия YCd=64,22%, для меди YCu=99,16%, для хрома YCr=99,98% и для железа YFe=99,58%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 5. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 10 мг/л. Время отстаивания 4 суток.

Степени очистки водного раствора равны: для никеля YNi=29,17%, для кадмия YCd=51,24%, для меди YCu=91,76%, для хрома YCr=86,88% и для железа YFe=99,18%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 6. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков равен 3 мм. После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 10 мг/л. Время отстаивания 8 суток.

Степени очистки водного раствора равны: для никеля YNi=26,93%, для кадмия YCd=52,44%, для меди YCu=84,79%, для хрома YCr=77,83% и для железа YFe=99,3%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Количественный анализ ионов, содержащихся в водном растворе после очистки, проводился на масс-спектрометре Agilent 7500 ICP-MS.

Результаты опытов по очистке раствора от хрома (VI) по сравнению с прототипом приведены в таблице .

Результаты опытов по очистке от Cr6+ по сравнению с прототипом Способ Сo, мг/л Ск, мг/л ПДК, мг/л Y, % W, (кВт·ч)/м3 По прототипу 0,5 0,02 0,001 96 1,5-2 Предлагаемым способом 0,5 0,0001 99,98 0,47

Экспериментальные данные показали, что максимальная степень очистки достигается при электролизе воды и водных растворов барботированием воздухом с диаметром пузырьков больше межэлектродного расстояния, введением комплексообразователя - соли железа двухвалентного (FeSO4), в соотношении 5:1 и отстаиванием раствора в течение 8 суток. При этом степени очистки водного раствора равны: для никеля YNi=34,44%, для кадмия YCd=63,44%, для меди YCu=99,56%, для хрома YCr=99,98% и для железа YFe=99,28%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Похожие патенты RU2519383C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЕДКОГО НАТРА 2008
  • Чекушин Владимир Семенович
  • Олейникова Наталья Васильевна
  • Тихонова Елена Владимировна
RU2366762C1
СПОСОБ ОЧИСТКИ ФИЛЬТРАТА ПОЛИГОНА ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ 2009
  • Гонопольский Адам Михайлович
  • Кушнир Константин Яковлевич
  • Миташова Нина Исааковна
  • Николайкина Наталья Евгеньевна
RU2400437C1
СПОСОБ ОБЕЗЗАРАЖИВАНИЯ ВОДНЫХ СИСТЕМ МИНЕРАЛИЗОВАННЫМИ ПРОМЫШЛЕННЫМИ ВОДАМИ В ВИДЕ РАСТВОРОВ ГИПОХЛОРИТА 2013
  • Чантурия Валентин Алексеевич
  • Козлов Андрей Петрович
  • Двойченкова Галина Петровна
  • Миненко Владимир Геннадиевич
  • Самусев Андрей Леонидович
RU2540616C2
Способ очистки навозных стоков 2018
  • Азарян Александр Ашотович
  • Нормов Дмитрий Александрович
  • Нормова Милослава Дмитриевна
  • Нормова Надежда Дмитриевна
  • Пожидаев Денис Владимирович
RU2688610C1
СПОСОБ РЕГЕНЕРАЦИИ ЭТИЛЕНДИАМИНТЕТРАУКСУСНОЙ КИСЛОТЫ ИЗ ОТРАБОТАННОГО ПРОМЫВОЧНОГО РАСТВОРА ПАРОГЕНЕРАТОРОВ ЭЛЕКТРОСТАНЦИЙ 2002
  • Иванов В.Н.
  • Ермолаев Н.П.
  • Смыков В.Б.
RU2213064C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ ЩЕЛОЧИ 2008
  • Чекушин Владимир Семенович
  • Олейникова Наталья Васильевна
  • Тихонова Елена Владимировна
RU2366761C1
СПОСОБ ВЫДЕЛЕНИЯ СЕРЕБРА ИЗ СЕРЕБРОСОДЕРЖАЩЕГО СПЛАВА 2013
  • Шигин Евгений Сергеевич
  • Гаврилов Станислав Анатольевич
  • Кузнецов Денис Валерьевич
  • Котыхов Михаил Игоревич
  • Березин Василий Николаевич
  • Шигин Сергей Валентинович
  • Трещетенкова Ирина Леонидовна
  • Трещетенков Евгений Евгеньевич
RU2540242C1
Способ комплексной очистки сточных вод от цианидов, тиоцианатов, мышьяка, сурьмы и тяжелых металлов 2015
  • Петров Владимир Феофанович
  • Петров Сергей Владимирович
RU2615023C2
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Ястребов Константин Леонидович
  • Раздолькин Валентин Николаевич
RU2094394C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ КОМПЛЕКСООБРАЗУЮЩИХ РЕАГЕНТОВ В ВОДНЫХ РАСТВОРАХ 2001
  • Косяков В.Н.
  • Яковлев Н.Г.
  • Велешко И.Е.
  • Хрубасик Альфред
RU2201401C1

Реферат патента 2014 года СПОСОБ ОЧИСТКИ ВОДЫ И ВОДНЫХ РАСТВОРОВ ОТ АНИОНОВ И КАТИОНОВ

Изобретение относится к очистке воды и водных растворов от анионов и катионов и может быть использовано для очистки природных вод, стоков металлургической, машиностроительной и других отраслей промышленности. Очистку воды и водных растворов от анионов и катионов проводят электролизом переменным асимметричным током с использованием нерастворимых электродов, процесс электролиза проводят с барботажем воздухом при диаметре пузырьков воздуха больше межэлектродного расстояния с последующим введением в раствор комплексообразователя - соли железа двухвалентного (FeSO4) - в соотношении 5:1 по отношению к начальной концентрации очищаемого иона и дальнейшим отстаиванием раствора в течение 8 суток. Технический результат - повышение степени очистки и снижение удельных энергозатрат. 1 табл., 6 пр.

Формула изобретения RU 2 519 383 C1

Способ очистки воды и водных растворов от анионов и катионов электролизом переменным асимметричным током с использованием нерастворимых электродов, отличающийся тем, что процесс электролиза проводят с барботажем воздухом при диаметре пузырьков воздуха больше межэлектродного расстояния с последующим введением в раствор комплексообразователя - соли железа двухвалентного (FeSO4) - в соотношении 5:1 по отношению к начальной концентрации очищаемого иона и дальнейшим отстаиванием раствора в течение 8 суток.

Документы, цитированные в отчете о поиске Патент 2014 года RU2519383C1

Способ электрохимической очистки воды и водных растворов от ионов тяжелых металлов 1988
  • Шестаков Иван Яковлевич
  • Вдовенко Владимир Георгиевич
SU1724591A1
СПОСОБ ОЧИСТКИ ВОДЫ И ВОДНЫХ РАСТВОРОВ ОТ АНИОНОВ И КАТИОНОВ 2001
  • Стрюк А.И.
  • Шестаков И.Я.
  • Фадеев А.А.
  • Фейлер О.В.
  • Сурсяков А.А.
  • Кушнир А.А.
RU2213701C2
Способ очистки сточных вод от ионов тяжелых металлов и устройство для его осуществления 1989
  • Колесников Владимир Александрович
  • Кокарев Геннадий Александрович
  • Шалыт Евгений Анатольевич
  • Варксин Станислав Олегович
SU1675215A1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ВОДЫ 2002
  • Голованчиков А.Б.
  • Козловцев В.А.
  • Ходырев Д.В.
  • Навроцкий В.А.
  • Навроцкий А.В.
RU2212377C1
Прялка 1927
  • Сорокин С.П.
SU12633A1
US 6113773 A, 05.09.2000
US 6773575 B2, 10.08.2004

RU 2 519 383 C1

Авторы

Шестаков Иван Яковлевич

Раева Олеся Владимировна

Даты

2014-06-10Публикация

2012-12-13Подача