СПОСОБ ПОЛУЧЕНИЯ ДВУХСЛОЙНОГО НЕСУЩЕГО КАТОДА ДЛЯ ТВЕРДООКСИДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ Российский патент 2014 года по МПК H01M8/10 

Описание патента на изобретение RU2522188C1

Изобретение относится к области высокотемпературной электрохимии и электрохимической энергетики, а именно к несущим катодам на основе манганита лантана стронция (LSM), и может быть использовано в производстве электрохимических устройств с тонкослойным твердым электролитом из керамики на основе диоксида циркония, стабилизированного оксидом иттрия (YSZ), например, топливных элементов, работающих при температурах 600-800°С,

Известно, что чем тоньше твердый электролит, тем меньше внутреннее сопротивление электрохимического устройства, созданного на его основе. Однако для того чтобы в электрохимических устройствах применять тонкопленочные электролиты, необходимо выполнить условие, чтобы газовые реагенты и продукты реакции достаточно свободно подходили и отходили от границы твердого электролита и электрода. Для этих целей несущий электрод целесообразно изготавливать с повышенной пористостью со стороны газовой полости и пониженной, но обеспечивающей требуемый ток, вблизи твердого электролита. Этому условию может удовлетворять двухслойный электрод.

Оксидные материалы на основе манганита лантана стронция LSM традиционно используют в качестве катодов для твердооксидных топливных элементов. Известен высокотемпературный электрохимический элемент с двухслойным несущим катодом, коллекторный слой которого состоит из наночастиц манганита лантана стронция толщиной 1-1,5 мм, пористостью 40-50% и размером пор 1-5 мкм, а электродный слой состоит из смеси нанопорошков, содержащей манганит лантана стронция и диоксид циркония, стабилизированного оксидом иттрия, при их объемном соотношении 1:1 (RU 2368983, опубл. 27.09.2009 г.). Двухслойный градиентный катод известного электрохимического элемента получают следующим образом. Вначале катод формуют магнитно-импульсным прессованием при давлении всестороннего сжатия 0,1-1,8 ГПа из одного слоя пленки электродного материала из смеси нанопоорошков LSM и YSZ и коллекторного слоя из наноразмерного порошка LSM. При этом смесь нанопорошков содержит взятые в объемном соотношении 1:1 агрегированный нанопорошок LSM и слабоагрегированный, пассивированный при 1000°С нанопорошк YSZ толщиной 5-2-мкм, а также термопластичное связующее, например поливинилбутираль, в количестве 10-14 вес.%. Пленка электродного материала из смеси порошков может быть изготовлена литьем пленок на лавсановую подложку. Полученный катод спекают при 900-1000°С и на него электрофоретическим способом из суспензии в неводной дисперсионной среде, содержащей связующее акрилатного типа, осаждают сферические слабо агрегированные наночастицы твердого электролита, например YSZ, с образованием плотного тонкого толщиной 2-5 мкм слоя. Катод с нанесенным на него слоем электролита нагревают до 600°С со скоростью 0,3-1°/мин, затем до 1200°С со скоростью 3-10°/мин с последующей выдержкой при данной температуре в течение 3-5 часов. После выдержки на слой твердого электролита наносят слой анода в виде пасты, состоящей из наночастиц твердого электролита и наночастиц никеля, и припекают его. Выполненный из наноматериалов известный высокотемпературный электрохимический элемент, содержащий двухслойный катод и электрофоретически осажденный твердый электролит со структурой LSM/LSM+YSZ/YSZ/Ni+YSZ, позволяет получить в режиме водородно-воздушного топливного элемента удельные мощности 0,5-1,0 Вт/см2 при температурах ниже 900°С.

Известный способ изготовления двухслойного несущего катода и содержащего этот катод высокотемпературного электрохимического элемента требует применения наноразмерных материалов, в том числе с идеальной сферической формой и специфического, дорогостоящего оборудования. Способ многостадиен и сложен, что ограничивает его использование в промышленном производстве топливных элементов.

Задача настоящего изобретения заключается в упрощении технологии изготовления двухслойного несущего катода на основе манганита лантана стронция и соответственно технологии изготовления высокотемпературного электрохимического элемента с этим катодом для твердооксидных топливных элементов, работающих при температурах 600-800°С.

Способ получения двухслойного катода для твердооксидных топливных элементов, включающий формование электродного и коллекторного слоев катода и их спекание, при этом коллекторный слой катода формуют из порошка манганита лантана стронция, а электродный слой - из смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия. Для формования коллекторного слоя используют порошок манганита лантана стронция, полученного твердофазным синтезом состава La0.6Sr0.4MnO3, для электродного слоя - состава La0.75Sr0.2MnO3, электродный слой из смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия, готовят при их массовом соотношении 1:1, в порошок состава La0.6Si0.4MnO3 вводят порообразователь в количестве 15 мас.%, из полученного порошка изготавливают коллекторный слой, который обжигают при 1350°С в течение 2 часов, на полученный слой наносят электродный слой в виде спиртовой суспензии смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия, слои спекают при 1200°С в течении 2 часов.

Способ предусматривает изготовление двух слоев катода - толстого, высокопористого коллекторного слоя с высокой электропроводностью из манганита лантана стронция состава La0.6Sr0.4MnO3 (LSM) и тонкого, композитного электродного слоя из манганита лантана стронция состава La0.75Sr0.2MnO3 и оксида циркония, стабилизированного оксидом иттрия 8YSZ, при их массовом соотношении 1:1, обладающего меньшим по сравнению с коллекторным слоем диаметром пор и высокой электрохимической активностью в области рабочих температур.

Коллекторный слой катода из манганита лантана стронция состава La0.6Sr0.4MnO3, полученного твердофазным синтезом, характеризуется высокой электропроводностью, а также относительно небольшой спекаемостью, что предотвращает его растрескивание. Это обусловлено тем, что La0.6Sr0.4MnO3 проходит несколько стадий высокотемпературного обжига, что позволяет полностью сформировать микроструктуру коллекторного слоя катода. Кроме того, этот материал позволяет вводить в него порошкообразный порообразователь, выгорающий при спекании катода, который задает необходимую пористость и размеры пор коллекторного слоя, улучшая диффузионные показатели при доставке кислорода к зоне реакции.

Электродный слой катода, изготовленный из смеси порошков из манганита лантана стронция состава La0.75Sr0.2MnO3 и оксида циркония, стабилизированного оксидом иттрия 8YSZ, при их массовом соотношении 1:1, обладает развитой трехфазной границей «электрод-электролит-газ», которая образуется вследствие контакта частиц фаз, проводящих по ионам кислорода и электронам. Это обеспечивает высокую электрохимическую активность получаемого двухслойного катода.

Таким образом, заявляемый способ позволяет получать двухслойный несущий катод для ТОТЭ, обладающий высокими электрохимическими характеристиками без применения специфического, дорогостоящего оборудования использования наноразмерных исходных порошков с идеальной сферической формой.

Новый технический результат, достигаемый заявленным изобретением, заключается в упрощении технологии получения двухслойного несущего катода, обладающего высоким уровнем электропроводности и электрохимической активности при работе в области рабочих температур.

Заявленное изобретение иллюстрируется следующим. На фиг.1 представлено распределение по размерам объема пор коллекторного слоя LSM. На фиг.2 - зависимость электропроводности коллекторного LSM слоя от температуры. На фиг.3 - распределение по размерам объема пор электродного слоя, состоящего из 50 мас.% La0.75Sr0.2MnO3+50 мас.% 8YSZ. На фиг.4 - зависимость электропроводности электродного слоя от температуры.

Заявленный способ осуществляется следующим образом. Для получения коллекторного слоя катода состава La0.6Sr0.4MnO3 смесь исходных компонентов - оксидов La2O3, MnO2 и карбоната SrCO3 в стехиометрическом соотношении перемешивают в барабане планетарной мельницы, прессуют в таблетки и подвергает предварительному синтезу при 1250°С в течение 12 часов. После этого таблетки дробят и подвергают помолу. В получившийся порошок добавляют порообразователь - графит в количестве 15 мас.%. Из полученного порошка формируют коллекторный слой катода либо в виде пластины методом прессования (методом экструзии можно получать коллекторный слой в виде трубки), которую обжигают при 1350°С в течение 2 часов. Толщина коллекторного слоя после обжига составляет около 1 мм.

Для изготовления электродного слоя катода готовят смесь порошков, содержащую манганит лантана стронция состава La0.75Si0.2MnO3 и оксида циркония, стабилизированного оксидом иттрия, при их массовом соотношении 1:1, для чего используют оксиды La2o3, MnO2 и карбоната SrCO3 и готовый порошок 8YSZ. Порошки оксидов La2O3, MnO2 и карбоната SrCO3 смешивают в стехиометрическом соотношении и перемешивают в барабане планетарной мельницы, прессуют в таблетки и подвергают предварительному синтезу при 1250°С в течение 12 часов. После этого таблетки дробят и подвергают помолу. В получившийся порошок добавляют порошок 8YSZ в количестве 50 мас.% и перемешивают. Из получившейся смеси порошков готовят спиртовую суспензию, наносят на поверхность обожженной пластины - коллекторного слоя и спекают при 1200°С в течение 2 часов. Толщина электродного слоя после спекания составляет около 15 мкм.

Из фиг.1 видно, что коллекторный слой катода имеет диаметр пор от 0,5 до 3,0 мм, то есть достаточный для свободного проникновения газовых компонентов к электродному слою катода. Как видно из фиг.2, полученные значения электропроводности коллекторного LSM слоя в области рабочих температур (600-800°С) составляют около 80-85 См/см, что является достаточным для равномерного распределения тока в объеме толстого коллекторного слоя катода. Из фиг.3 видно, что диаметр пор электродного слоя заметно меньше диаметров пор коллекторного слоя, и их распределение находится в более узком интервале. Это способствует успешному изготовлению пленочного электролита на поверхности электродного слоя и обеспечивает расширенную трехфазную границу. Из фиг.4 следует, что электропроводность электродного слоя существенно ниже по сравнению с коллекторным слоем катода, однако является достаточной для равномерного распределения тока в объеме электродного слоя катода с учетом толщины данного слоя в несколько десятков микрон.

Таким образом, заявленный способ позволяет более простым способом изготовить двухслойный несущий катод на основе манганита лантана стронция и содержащий его высокотемпературный электрохимический элемент для твердооксидных топливных элементов, работающих при температурах 600-800°С.

Похожие патенты RU2522188C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДООКСИДНОГО ТОПЛИВНОГО ЭЛЕМЕНТА С ДВУХСЛОЙНЫМ НЕСУЩИМ КАТОДОМ 2013
  • Богданович Нина Михайловна
  • Береснев Сергей Николаевич
  • Кузин Борис Леонидович
  • Осинкин Денис Алексеевич
  • Бронин Дмитрий Игоревич
RU2523693C1
ВЫСОКОТЕМПЕРАТУРНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ ЭЛЕМЕНТ С ЭЛЕКТРОФОРЕТИЧЕСКИ ОСАЖДЕННЫМ ТВЕРДЫМ ЭЛЕКТРОЛИТОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2008
  • Липилин Александр Сергеевич
  • Сафронов Александр Петрович
  • Иванов Виктор Владимирович
  • Котов Юрий Александрович
  • Никонов Алексей Викторович
  • Калинина Елена Григорьевна
  • Ремпель Алексей Андреевич
  • Заяц Сергей Владимирович
  • Паранин Сергей Николаевич
  • Хрустов Владимир Рудольфович
RU2368983C1
ТВЕРДЫЙ ОКИСНЫЙ ЭЛЕМЕНТ И СОДЕРЖАЩАЯ ЕГО БАТАРЕЯ 2009
  • Хендриксен Петер Ванг
  • Барфод Расмус
  • Лиу Йи-Лин
  • Чен Минь
RU2521874C2
ПЛАНАРНЫЙ ЭЛЕМЕНТ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ, БАТАРЕЯ И СПОСОБ ИЗГОТОВЛЕНИЯ 2010
  • Шмаков Вячеслав Андреевич
  • Липилин Александр Сергеевич
  • Сигалов Игорь Ефимович
  • Ломонова Елена Евгеньевна
  • Никонов Алексей Викторович
  • Спирин Алексей Викторович
  • Паранин Сергей Николаевич
  • Хрустов Владимир Рудольфович
  • Валенцев Александр Викторович
RU2417488C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КАТОДНЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАНГАНИТА ЛАНТАНА-СТРОНЦИЯ 2014
  • Поротникова Наталья Михайловна
  • Ананьев Максим Васильевич
RU2542752C1
ТРУБЧАТЫЙ ЭЛЕМЕНТ (ВАРИАНТЫ) ДЛЯ БАТАРЕЙ ВЫСОКОТЕМПЕРАТУРНЫХ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ С ТОНКОСЛОЙНЫМ ТВЕРДЫМ ЭЛЕКТРОЛИТОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2005
  • Липилин Александр Сергеевич
  • Иванов Виктор Владимирович
  • Хрустов Владимир Рудольфович
  • Паранин Сергей Николаевич
  • Спирин Алексей Викторович
RU2310256C2
ТРУБЧАТЫЙ ТВЕРДООКСИДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ С МЕТАЛЛИЧЕСКОЙ ОПОРОЙ, ЕГО ТРУБЧАТЫЙ МЕТАЛЛИЧЕСКИЙ ПОРИСТЫЙ ОПОРНЫЙ СЛОЙ И СПОСОБЫ ИХ ИЗГОТОВЛЕНИЯ 2007
  • Коржов Валерий Поликарпович
  • Бредихин Сергей Иванович
  • Кведер Виталий Владимирович
  • Карпов Михаил Иванович
  • Жохов Андрей Анатольевич
  • Севастьянов Владимир Владимирович
  • Никитин Сергей Васильевич
  • Лавриков Александр Сергеевич
RU2332754C1
ТРУБЧАТЫЙ ЭЛЕМЕНТ ЭЛЕКТРОХИМИЧЕСКОГО УСТРОЙСТВА С ТОНКОСЛОЙНЫМ ТВЕРДООКСИДНЫМ ЭЛЕКТРОЛИТОМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2015
  • Спирин Алексей Викторович
  • Липилин Александр Сергеевич
  • Паранин Сергей Николаевич
  • Никонов Алексей Викторович
  • Хрустов Владимир Рудольфович
  • Иванов Виктор Владимирович
RU2625460C2
АКТИВНЫЙ ДВУХСЛОЙНЫЙ ЭЛЕКТРОД ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ С ТВЕРДЫМ ЭЛЕКТРОЛИТОМ 2006
  • Богданович Нина Михайловна
  • Кузин Борис Леонидович
  • Бронин Дмитрий Игоревич
  • Демьяненко Татьяна Александровна
  • Ярославцев Игорь Юрьевич
  • Котов Юрий Александрович
  • Мурзакаев Айдар Марксович
  • Багазеев Алексей Викторович
RU2322730C2
Способ получения нанодисперсного порошка диоксида молибдена для изготовления анода твердооксидного топливного элемента 2019
  • Гумеров Ирек Флорович
  • Назаренко Сергей Владимирович
  • Трапезников Алексей Николаевич
  • Сахаров Дмитрий Андреевич
  • Аверина Юлия Михайловна
  • Кузнецов Виталий Владимирович
RU2729049C1

Иллюстрации к изобретению RU 2 522 188 C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ДВУХСЛОЙНОГО НЕСУЩЕГО КАТОДА ДЛЯ ТВЕРДООКСИДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Изобретение относится к области электротехники, а именно к несущим катодам на основе манганита лантана стронция. Способ получения двухслойного катода для твердооксидных топливных элементов, включает формование электродного и коллекторного слоев катода и их спекание, при этом коллекторный слой катода формуют из порошка манганита лантана стронция, а электродный слой - из смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия. Для формования коллекторного слоя используют порошок манганита лантана стронция, полученного твердофазным синтезом состава La0.6Sr0.4MnO3, для электродного слоя - состава La0.75Sr0.2MnO3, электродный слой из смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия, готовят при их массовом соотношении 1:1, в порошок состава La0.6Sr0.4MnO3 вводят порообразователь в количестве 15 мас.%, из полученного порошка изготавливают коллекторный слой, который обжигают при 1350°С в течение 2 часов, на полученный слой наносят электродный слой в виде спиртовой суспензии смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия, слои спекают при 1200°С в течение 2 часов. Техническим результатом изобретения является упрощение технологии получения двухслойного несущего катода, при повышении его уровня электропроводности и электрохимической активности в области температур 600-800оС. 4 ил.

Формула изобретения RU 2 522 188 C1

Способ получения двухслойного катода для твердооксидных топливных элементов, включающий формование электродного и коллекторного слоев катода и их спекание, при этом коллекторный слой катода формуют из порошка манганита лантана стронция, а электродный слой - из смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия, отличающийся тем, что используют порошок манганита лантана стронция, полученного твердофазным синтезом состава La0.6Sr0.4МnО3 - для коллекторного слоя и состава Lа0.75Sr0.2МnО3 - для электродного слоя катода, электродный слой из смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия, готовят при их массовом соотношении 1:1, в порошок состава La0.6Sr0.4MnO3 вводят порообразователь в количестве 15 мас.%, из полученного порошка изготавливают коллекторный слой, который обжигают при 1350°С в течение 2 часов, на полученный слой наносят электродный слой в виде спиртовой суспензии смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия, слои спекают при 1200°С в течение 2 часов.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522188C1

ВЫСОКОТЕМПЕРАТУРНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ ЭЛЕМЕНТ С ЭЛЕКТРОФОРЕТИЧЕСКИ ОСАЖДЕННЫМ ТВЕРДЫМ ЭЛЕКТРОЛИТОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2008
  • Липилин Александр Сергеевич
  • Сафронов Александр Петрович
  • Иванов Виктор Владимирович
  • Котов Юрий Александрович
  • Никонов Алексей Викторович
  • Калинина Елена Григорьевна
  • Ремпель Алексей Андреевич
  • Заяц Сергей Владимирович
  • Паранин Сергей Николаевич
  • Хрустов Владимир Рудольфович
RU2368983C1
ГРАДИЕНТНЫЕ СТРУКТУРЫ С ИЗМЕНЕНИЕМ СВОЙСТВ В ГОРИЗОНТАЛЬНОМ НАПРАВЛЕНИИ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ И ЭЛЕКТРОННЫХ УСТРОЙСТВ 2008
  • Ларсен Петер Халвор
  • Хендриксен Петер Ванг
  • Линдерот Сёрен
  • Могенсен Могенс
RU2380790C1
КЕРАМИЧЕСКИЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ (ВАРИАНТЫ) 1999
  • Лоулисс Уильям Николас
RU2221315C2
ТОНКОСЛОЙНЫЙ ТВЕРДООКСИДНЫЙ ЭЛЕМЕНТ 2007
  • Ларсен Петер Халвор
  • Линдерот Сёрен
  • Хендриксен Петер Ванг
RU2427945C2
US 2007087249 A1,19.04.2007
JP H06150949 A, 31.05.1994

RU 2 522 188 C1

Авторы

Богданович Нина Михайловна

Береснев Сергей Николаевич

Кузин Борис Леонидович

Осинкин Денис Алексеевич

Бронин Димитрий Игоревич

Даты

2014-07-10Публикация

2013-03-26Подача