ЭЛЕКТРОПРОВОДНЫЙ ПЛАСТИЧНЫЙ МАТЕРИАЛ Российский патент 2014 года по МПК C10M125/04 C10M107/50 H01R4/38 C10N10/16 C10N10/06 

Описание патента на изобретение RU2523911C2

Изобретение относится к электротехнике и может быть использовано при ошиновке энергоемких технологических установок, электролизеров химической промышленности, цветной металлургии, силовой преобразовательной техники и может быть использовано в вышеуказанных отраслях.

Известен электропроводный композиционный углеродосодержащий материал на основе малопроводящего материала, смешанного с электропроводной углеродной добавкой и А.С. №2398312, 2008 г. Но использование этого материала возможно только на малых токах и только при добавлении определенной электропроводной углеродной добавки.

Известна пластичная смазка ЦИАТИМ-221 (ГОСТ 9433-80) на основе полиоргансилоксановой жидкости 132-25, загущенной кальциевым мылом стеариновой кислоты, с добавлением церезина-80 и пакета присадок.

Недостаток этого материала заключается в том, что его трибометрические, свойства очень низкие, недостаточен температурный предел работоспособности (+150°C). При его использовании в сильноточных контактных соединениях в условиях агрессивной среды и повышенной влажности со временем происходит окисление материала и пригорание контактных поверхностей, что приводит к повышению сопротивления контактного соединения и изменяются его физико-химические свойства.

Техническим результатом предлагаемого изобретения является повышение долговечности, термостойкости материала, улучшение его электропроводных свойств.

Технический результат достигается тем, что используя материал на основе полиоргансилоксановой жидкости 132-25, загущенной кальциевым мылом стеариновой кислоты, с добавлением церезина-80 и пакета присадок в качестве основы, в него добавляют интерметаллид FeGa4, полученный в результате смешивания галлий-индиевого расплава с порошком железным распыленным, химический и гранулометрический составы, средний размер частиц которого колеблется от 20 до 400 мкм, содержание основного металла не ниже 98…99%, а насыпная плотность равна 2,3…2,9 г/см. Количественное содержание железа и галлия в интерметаллиде FeGa4 определяется по формулам

β F e = γ F e γ F e + γ G a 4 100 %

β G a = γ G a 4 γ M e + γ G a 4 100 %

где βFe, βGa - процентное содержание в интерметаллическом порошке железа и галлия; γFe, γGa - атомные веса железа и галлия. Затем в полученную смесь вводят эвтектический сплав галлий-индий-олово и перемешивают с порошком железным распыленным. Общее соотношение исходного и добавленного материалов: 60% - исходного, 40% - добавленного.

Для приготовления электропроводного пластичного материала сначала получают интерметаллид FeGa4 путем смешивания галлий-индиевого расплава с порошком железным распыленным. После нескольких минут тщательного медленного перемешивания образуется густая металлическая паста. Количественное содержание железа и галлия в интерметаллиде FeGa4 определяется по формулам

β F e = γ F e γ F e + γ G a 4 100 %

β G a = γ G a 4 γ M e + γ G a 4 100 %

где βFe, βGa - процентное содержание в интерметаллическом порошке железа и галлия; γFe, γGa - атомные веса железа и галлия. Коррозия стали в галлий-индиевом расплаве сопровождается образованием бинарного галлида FeGa4 с объемноцентрированной кубической решеткой. На диаграмме состояния Fe-Ga в области с относительно небольшим содержанием галлия в зависимости от термической обработки может существовать несколько фаз (3…6).

Проведение промежуточной реакции образования интерметаллидов (галлидов) обеспечивает перевод системы в состояние с минимумом свободной энергии. На эту реакцию расходуется дополнительное количество жидкого металла. Однако затраты этого количества жидкого металла на стадии приготовления электропроводного пластичного материала обеспечивают повышение его термодинамической стабильности в режиме эксплуатации.

Полученный интерметаллид FeGa4, в виде гутой пасты, добавляется в смазку ЦИАТИМ-221. После нескольких минут тщательного медленного перемешивания в эту смесь добавляется эвтектический сплав галлий-индий-олово и порошок железный распыленный. Перемешивание продолжается до образования однородного пастообразного материала. Вязкость получаемого материала регулируется соотношением добавляемого количества эвтектического сплава галлий-индий-олово и порошка железного распыленного. Общее соотношение исходного и добавленного материалов: 60% - исходного, 40% - добавленного.

Полученный пластичный электропроводный материал наносится на контактирующие поверхности со средней толщиной 0,2 мм.

Проведены стендовые испытания модуля контактного соединения в условиях хлорного производства, работающих в диапазоне температур 100…250°C.

Средние значения падений напряжения по результатам 500 измерений в течение трехлетней эксплуатации для контактов размером 0,05 × 0,1 м и током 2 кА равны 45 мВ для площадок медь-медь и 64 мВ для площадок медь-сталь. Стендовые испытания модуля контактного соединения электролизера с током нагрузки IH=3000 А показало падение напряжения на контактном соединении с применением материала ЦИАТИМ-221, которое составило 18,3·10-3 В, что соответствует переходному сопротивлению Rд=6,1·10-6 Ом, после применения полученного электропроводного пластичного материала в контактном соединении падение напряжения составило 12,3·10-3 В, что соответствует переходному сопротивлению Rд=4,1·10-6 Ом.

Испытания показали, что при нормальной температуре переходные сопротивления болтовых медных контактов с использованием пластичного электропроводного материала близки к переходным сопротивлениям сварных контактов. Введение полученного материала в межконтактный промежуток болтовых соединений снижает переходное сопротивление в 2…4 раза. При тех же условиях снижение переходного сопротивления в паре сталь-графит наблюдалось в 10 раз.

Также испытания показали, что переходное сопротивление контактов с нанесенным на них пластичным электропроводным материалом практически не зависит от степени контактного нажатия.

Похожие патенты RU2523911C2

название год авторы номер документа
Способ соединения материалов 1979
  • Андреева Лидия Ивановна
  • Гусев Иван Дмитриевич
  • Камарицкий Борис Александрович
  • Курашов Александр Юрьевич
  • Кусков Александр Леонидович
  • Македонцев Михаил Александрович
  • Михайлов Валентин Михайлович
  • Южин Анатолий Иванович
SU833384A1
УСТРОЙСТВО ТОКОСЪЕМА ДЛЯ КОЛЛЕКТОРНО-ЩЕТОЧНОГО УЗЛА ТЯГОВОЙ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ 2023
  • Зарифьян Александр Александрович
  • Коротков Вячеслав Михайлович
  • Мустафин Адель Шамильевич
RU2813360C1
ЖАРОПРОЧНЫЙ ПОРОШКОВЫЙ АЛЮМИНИЕВЫЙ МАТЕРИАЛ 2019
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Королев Владимир Александрович
  • Михайлов Иван Юрьевич
  • Сеферян Александр Гарегинович
RU2730821C1
СПОСОБ АКТИВАЦИИ АЛЮМИНИЯ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА 2014
  • Школьников Евгений Иосифович
  • Атманюк Ирина Николаевна
  • Долженко Александр Владимирович
  • Янилкин Игорь Витальевич
RU2606449C2
ШУМОПОДАВЛЯЮЩАЯ СМАЗОЧНАЯ КОМПОЗИЦИЯ ДЛЯ КОНТАКТИРУЮЩИХ СТАЛЬНЫХ ПОВЕРХНОСТЕЙ 2021
  • Гейфман Григорий Владимирович
  • Гороховский Александр Владиленович
RU2755089C1
Электропроводная пластичная смазка 1975
  • Равикович Рахиль Самсоновна
  • Степанянц Сурен Аванесович
  • Пигульский Анатолий Александрович
  • Мищук Александр Авраамович
  • Фукс Игорь Григорьевич
  • Губанова Валентина Андриановна
  • Жиленко Диана Дмитриевна
  • Шестопалова Валентина Яковлевна
  • Морока Мелания Михайловна
SU551355A1
ПОРОШКОВЫЙ АЛЮМИНИЕВЫЙ МАТЕРИАЛ 2019
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Вахромов Роман Олегович
  • Поляков Сергей Витальевич
  • Рябов Дмитрий Константинович
  • Королев Владимир Александрович
  • Даубарайте Дарья Константиновна
  • Логинова Ирина Сергеевна
RU2737902C1
ПОРОШКОВЫЙ АЛЮМИНИЕВЫЙ МАТЕРИАЛ 2019
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Вахромов Роман Олегович
  • Рябов Дмитрий Константинович
  • Королев Владимир Александрович
  • Даубарайте Дарья Константиновна
  • Солонин Алексей Николаевич
  • Чурюмов Александр Юрьевич
RU2741022C1
МАТЕРИАЛ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДОВ АЛЮМИНИЯ ДЛЯ АДДИТИВНЫХ ТЕХНОЛОГИЙ 2023
  • Манн Виктор Христьянович
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Грушин Иван Алексеевич
  • Сеферян Александр Гарегинович
RU2818706C1
АЛЮМИНИЕВЫЙ МАТЕРИАЛ ДЛЯ АДДИТИВНЫХ ТЕХНОЛОГИЙ И ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ИЗ ЭТОГО МАТЕРИАЛА 2022
  • Манн Виктор Христьянович
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Грушин Иван Алексеевич
RU2804221C1

Реферат патента 2014 года ЭЛЕКТРОПРОВОДНЫЙ ПЛАСТИЧНЫЙ МАТЕРИАЛ

Изобретение относится к электротехнике и может быть использовано при ошиновке энергоемких технологических установок, электролизеров химической промышленности, цветной металлургии, силовой преобразовательной техники. Предложен электропроводный пластичный материал на основе полиоргансилоксановой жидкости 132-25, загущенной кальциевым мылом стеариновой кислоты с добавлением церезина-80, пакета присадок и интерметаллида FeGa4, эвтектического сплава галлий-индий-олово и порошка железного распыленного. Технический результат - предложенный материал может использоваться для сильноточных контактных соединений с повышенной электропроводностью, долговечностью и термостойкостью.

Формула изобретения RU 2 523 911 C2

Электропроводный пластичный материал на основе полиоргансилоксановой жидкости 132-25, загущенной кальциевым мылом стеариновой кислоты с добавлением церезина-80 и пакета присадок, отличающийся тем, что в него добавляют интерметаллид FeGa4, полученный путем смешивания галлий-индиевого расплава с порошком железным распыленным, химический и гранулометрический составы, средний размер частиц которого колеблется от 20 до 400 мкм, содержание основного металла не ниже 98…99%, а насыпная плотность равна 2,3…2,9 г/см (количественное содержание железа и галлия в интерметаллиде FeGa4 определяется по формулам
β F e = γ F e γ F e + γ G a 4 100 %
β G a = γ G a 4 γ M e + γ G a 4 100 %
где βFe, βGa - процентное содержание в интерметаллическом порошке железа и галлия; γFe, γGa - атомные веса железа и галлия); затем в полученную смесь вводят эвтектический сплав галлий-индий-олово и перемешивают с порошком железным распыленным; общее соотношение исходного и добавленного материалов: 60% - исходного, 40% - добавленного.

Документы, цитированные в отчете о поиске Патент 2014 года RU2523911C2

ПЛАСТИЧНАЯ СМАЗКА "СИЛКОН" 1997
  • Чигаренко Г.Г.
  • Пономаренко А.Г.
  • Бурлов А.С.
  • Огурцова Л.В.
RU2119533C1
Картотека 1927
  • Александров П.Н.
SU9433A1
Способ изготовления замочных ключей с отверстием для замочного шпенька из одной болванки с помощью штамповки и протяжки 1922
  • Личадеев Н.Н.
SU221A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
US 20090166593 A1, 02.07.2009

RU 2 523 911 C2

Авторы

Воронин Александр Анатольевич

Добросотских Алексей Сергеевич

Казанцев Александр Андреевич

Косорлуков Игорь Андреевич

Кулаков Павел Алексеевич

Даты

2014-07-27Публикация

2012-06-05Подача