СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА Российский патент 2014 года по МПК G01N23/20 

Описание патента на изобретение RU2524454C1

Изобретение относится к способу определения концентрации элемента (элементов), основанному на измерении характеристического рентгеновского излучения в веществах сложного химического и фазового состава, имеющих различную структуру и плотность.

Изобретение относится к методам неразрушающего контроля элементного состава вещества и реализуется в методах волнового и энергодисперсионного рентгенофлуоресцентного анализа.

Флуоресцентная эмиссия рентгеновских лучей является одним из наиболее мощных средств обнаружения и количественного определения элементов практически в любом фазовом состоянии сложного вещественного состава [Юинг Г. Инструментальные методы химического анализа. М.: Мир, 1989, 608 с.]. Учитывая, что структура и плотность матрицы влияет на интенсивность характеристической линии элемента, для определения концентрации элемента в образце сложного химического и фазового состава необходим набор стандартных образцов, имеющих фазовую структуру, идентичную структуре анализируемого образца, что не всегда технически и аналитически выполнимо.

Известен способ определения тяжелых металлов в породах и рудах по их характеристическому рентгеновскому излучению, возбуждаемому гамма-квантами рентгеновской трубки или другого источника излучения. Для уточнения влияния плотности матрицы, сокращения количества измерений и упрощения методики их проведения в условиях естественного залегания пород и руд производят одновременное измерение интенсивностей вторичного излучения в двух участках спектра, расположенных по разные стороны от К (L)-края поглощения искомого элемента (SU 171482, опубл. 26.05.1965).

Содержание искомого элемента находят по величине отношения интенсивностей в двух указанных участках спектра вторичного излучения. С целью определения нескольких элементов производят одновременное измерение интенсивностей вторичного излучения в участках спектра, расположенных по разные стороны от К (L)-краев поглощения каждого элемента. Недостатком указанного способа является нелинейная зависимость интенсивности вторичного рентгеновского излучения от концентрации элемента, что снижает точность анализа, а следовательно, недостаточно достоверная информация об анализируемом веществе.

Известен способ определения концентрации элемента и кристаллической фазы, куда входит определяемый элемент, в веществе сложного химического состава, включающий облучение пробы анализируемого вещества монохроматическим рентгеновским излучением, регистрацию интенсивности когерентно рассеянного определяемой кристаллической фазой первичного излучения. В способе предусматривается одновременная или последовательная регистрация интенсивности когерентно рассеянного излучения с интенсивностью некогерентного рассеянного первичного излучения этой же пробой, а затем по отношению указанных интенсивностей устанавливается концентрация определяемой фазы (RU 2255328, опубл. 27.06.2005).

Данный способ объединяет два направления: рентгеноспектральный и рентгенофазовый анализ. В рентгеноспектральном анализе определяется концентрация того или иного элемента, в рентгенофазовом анализе определяется концентрация той или иной фазы. Для реализации метода использовалось совершенно разное оборудование, основанное на разных физических принципах - рентгеновские спектрометры для рентгеноспектрального анализа и рентгеновские дифрактометры для рентгенофазового анализа. Способ позволяет снизить влияние химического и фазового состава пробы на ошибку измерения, однако не позволяет получить точную информацию о количестве анализируемого элемента, входящего в определяемую фазу.

Известен способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава (патент RU 2362149, опубл. 20.07.2009 г.), выбран в качестве прототипа, описывающий способ определения концентрации элемента и фазы в веществах сложного химического состава. Отличительной особенностью способа является то, что одновременно регистрируют интенсивность характеристического излучения определяемого элемента, его определяемой фазы и интенсивность когерентно и некогерентно рассеянного (по Комптону) излучений, а затем по отношению указанных интенсивностей определяют концентрации элемента и фазы, включающей данный элемент, что позволяет учитывать влияние вещественного состава на результаты анализа (матричный эффект). Предлагаемый способ основывается на методе спектральных отношений при рентгенофлуоресцентном анализе и разработанном автором способе определения концентрации фазы при рентгенофазовом анализе.

Автор утверждает, что отношение интенсивности аналитической линии Ii к интенсивности некогерентно рассеянному излучению Inc не зависит от матрицы пробы и может использоваться как аналитический параметр Ki ( K i = I i I n c ) . Однако метод, принятый в качестве прототипа, не учитывает влияние фона характеристического излучения, возникающего вследствие облучения пробы первичным потоком гамма-квантов, что вносит существенную погрешность в нахождение концентраций определяемых элементов [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.148, 208 с.].

Интенсивность фона, зависящая от структуры и состава пробы, пропорциональна интенсивности характеристического излучения, возбуждаемого первичным потоком рентгеновского излучения трубки или другого источника. В то же время интенсивность фона некогерентно рассеянного излучения пропорциональна интенсивности некогерентно рассеянных квантов первичного излучения с соответствующей энергией (длиной волны), зависящей от материала анода рентгеновской трубки [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.140, с.147, с.149, 208 с.].

Влияние фона можно не учитывать только в том случае, когда химический и фазовый состав анализируемых материалов является постоянным. Если же состав проб изменяется, то при их анализе интенсивность фона для каждого образца следует измерять рядом с аналитической линией, что является трудоемкой операцией и не всегда возможно в силу конволюции спектров характеристического излучения.

Техническим результатом настоящего изобретения является возможность определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона.

Технический результат достигается тем, что способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения проводят по аналитическому параметру вида Z i = ( I ( E i ) I ф о н а ( E i ) ) 2 ( I ( E n c ) I ф о н а ( E n c ) ) 2 , учитывающему влияние фона характеристического излучения, что позволяет привести к линейной зависимости измеряемых величин интенсивности характеристического излучения от концентрации каждого определяемого элемента в пробе сложного химического и фазового состава и тем самым значительно повысить точность анализа.

В формуле расчета аналитического параметра Zi для i-го элемента приняты следующие обозначения: Zi - аналитический параметр для элемента i; Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei; Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i; I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Нормирование скорректированной интенсивности аналитической линии к интенсивности некогерентно рассеянного излучения не зависит от матрицы пробы (вещественного состава, плотности и фазового состояния) и используется как аналитический параметр.

Для определения аналитических параметров в заявляемом способе проводят следующие операции:

1. Измеряют спектр характеристического излучения по всему диапазону энергий (длин волн), соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения.

2. По измеренному спектру рассчитывают интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, по формуле:

,

где Iфона(Ei) - интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента, Emin,i - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, IEmin,i+ΔE - интенсивность характеристического излучения в точке спектра с энергией Emin,i+ΔE.

3. По рассчитанной в п.2 интенсивности фона определяют скорректированную интенсивность для каждого i-го элемента по формуле:

Ji=(I(Ei)-Iфона(Ei))2,

где Ji - скорректированная интенсивность аналитической линии элемента i, I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной энергии Emin,i для i-го элемента.

4. По отношению интенсивностей аналитических линий элемента и некогерентно рассеянного излучения с учетом интенсивности фона рассчитывают аналитический параметр Zi для элемента i

где I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона, кратная энергии Emin,i для i-го элемента, I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Используя вместо измеряемых величин интенсивности характеристического излучения аналитический параметр Zi, получаем линейную зависимость аналитического параметра Zi от содержания i-го элемента в пробе:

Zi=aiCi+bi,

где ai и bi - коэффициенты пропорциональности, определяемые методом наименьших квадратов при построении калибровочных зависимостей для i-го элемента, Ci - концентрация элемента i в пробе.

Таким образом, вместо уравнения, связывающего интенсивность характеристического излучения i-го элемента с его концентрацией, используется зависимость аналитического параметра Zi от концентрации i-го элемента, что позволяет получить предельную линейную зависимость, устраняя влияние других элементов, входящих в пробу вещества сложного состава.

На фиг.1 приведена зависимость интенсивности I линии La элемента церия от его концентрации в растворе, на фиг.2 - линейная зависимость аналитического параметра Z для тех же образцов.

На фиг.2 видно, что введение параметра Z позволяет провести линеаризацию зависимости измеряемых величин от концентрации, что существенно повышает точность рентгенофлуоресцентного анализа.

На фиг.3 приведены зависимости интенсивности некогерентно рассеянного излучения от концентрации Ce в растворах и в твердой фазе (порошки). Изменение интенсивности некогерентно рассеянного излучения в растворах и порошках учитывается эквивалентным выражением, что показывает возможность учета влияния матрицы для проб различной структуры.

Техническая реализация предлагаемого способа осуществима на энергодисперсионных спектрометрах и спектрометрах с волновой дисперсией. При этом в качестве регистрирующего устройства могут использоваться полупроводниковые детекторы, кристаллы-сцинтилляторы, газоразрядные трубки и pin-диоды.

Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами конкретного выполнения.

Пример 1. Количественное определение фосфата церия в концентрате фосфатов редкоземельных элементов. Используемое оборудование: энергодисперсионный рентгеновский спектрометр РЕАН; условия измерения - Uycк - 40 кВ, Iанод - 100 мкА; материал анода - Мо; время экспозиции - 100 с; среда измерения - воздух; детектор некогерентно рассеянного излучения Si-pin-диод (16,57 кэВ).

Приготовлен массив градуировочных проб разбавлением химически чистого CePO4 продуктом моноаммонийфосфата (МАФ) дигидратного сернокислотного производства фосфорной кислоты с диапазоном концентраций по церию: 0,1-11,0%, 11-53,6%.

Объект анализа - гомогенизированный порошок разбавленного фосфата церия, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм, искомый элемент-аналит - церий. Полученные зависимости интенсивности Lα линии церия от концентрации элемента (%) и интенсивности некогерентно рассеянного излучения от концентрации Ce (%) представлены фиг.4 и 5.

Введение аналитического параметра Zi с учетом интенсивности фона для Lα линии церия позволяет получить линейные зависимости как для низких, так и для высоких концентраций данного элемента, представленные на фиг.6.

Пример 2. Количественное определение редкоземельных элементов (РЗЭ) в модельных смесях. Используемое оборудование: рентгеновский спектрометр «Спектроскан G»; условия измерения - Uуск - 40 кВ, Iанод - 100 мкА; материал анода - Ag; время экспозиции - 5 с; среда измерения - воздух; (16,57 кэВ); длина волны некогерентного рассеяния - 605 mÅ.

Приготовлен массив градуировочных проб разбавлением химически чистых нитратов РЗЭ продуктом МАФ. Объект анализа - гомогенизированный порошок разбавленных нитратов РЗЭ, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм. Элементы-аналиты - La, Er, Eu с диапазоном концентраций по лантану: 0,04-3%; по эрбию: 0,03-1%; по европию: 0,1-4%.

Использование аналитического параметра Zi с учетом интенсивности фона позволяет получить линейные зависимости для каждого элемента-аналита: лантана, эрбия и европия, от их концентрации в совместном присутствии. Полученные линейные зависимости аналитического параметра Zi от концентрации для характеристических линий Lα La, Lα Er и Lα Eu представлены на фиг.7, 8, 9.

Изобретение может быть использовано в различных отраслях промышленности для решения следующих задач:

- определение элементного состава руд, минералов, промышленных и товарных продуктов горнодобывающей промышленности;

- определение элементного состава природных и сточных вод, промышленных технологических растворов;

- исследование продуктов лабораторного и промышленного синтеза неорганических структур.

Похожие патенты RU2524454C1

название год авторы номер документа
СПОСОБ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА КОНЦЕНТРАЦИИ ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА 2020
  • Аниськов Роман Витальевич
  • Гордеев Андрей Анатольевич
  • Игнатьев Андрей Аркадьевич
  • Саркисов Сергей Владимирович
  • Черемисин Суад Зухер
RU2753164C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИЙ ЭЛЕМЕНТА И ФАЗЫ, ВКЛЮЧАЮЩЕЙ ДАННЫЙ ЭЛЕМЕНТ, В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА 2008
  • Косьянов Петр Михайлович
RU2362149C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ФАЗЫ В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА 2004
  • Косьянов П.М.
RU2255328C1
СПОСОБ РЕНТГЕНОСПЕКТРАЛЬНОГО ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОГО АТОМНОГО НОМЕРА МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОГО АТОМНОГО НОМЕРА МАТЕРИАЛА 2010
  • Петрова Лариса Николаевна
  • Брытов Игорь Александрович
  • Гоганов Андрей Дмитриевич
  • Калинин Борис Дмитриевич
  • Плотников Роберт Исаакович
RU2432571C1
Способ определения интенсивности фона 1984
  • Конев Александр Васильевич
  • Астахова Наталья Александровна
  • Слободянюк Татьяна Ефимовна
  • Григорьев Эдуард Васильевич
  • Суховольская Наталья Ефимовна
SU1226212A1
Способ определения рассеивающей способности излучателя 1985
  • Конев Александр Васильевич
  • Рубцова Светлана Николаевна
  • Григорьев Эдуард Васильевич
  • Суховольская Наталья Ефимовна
  • Астахова Наталья Александровна
SU1278693A1
Способ рентгеноспектрального флуоресцентного определения содержания элементов с большими и средними атомными номерами (его варианты) 1983
  • Конев Александр Васильевич
  • Григорьев Эдуард Васильевич
  • Слободянюк Татьяна Ефимовна
SU1176221A1
Способ количественного рентгеноструктурного фазового анализа 1986
  • Конев Александр Васильевич
  • Белецкая Елена Яковлевна
  • Рубцова Светлана Николаевна
  • Филиппов Александр Алексеевич
SU1376015A1
СПОСОБ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА 2002
  • Макарова Т.А.
  • Бахтиаров А.В.
  • Зайцев В.А.
RU2240543C2
Способ рентгенофлуоресцентного энергодисперсионного анализа растений 1981
  • Большаков Валентин Алексеевич
  • Сорокин Сергей Егорович
SU1017984A1

Иллюстрации к изобретению RU 2 524 454 C1

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА

Использование: для определения концентрации элемента в веществе сложного химического состава. Сущность изобретения заключается в том, что выполняют облучение пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, при этом установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения. Технический результат: обеспечение возможности определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона. 9 ил.

Формула изобретения RU 2 524 454 C1

Способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, отличающийся тем, что установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения, вида:

(Zi - аналитический параметр для элемента i; Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei; Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i; I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения),
где интенсивность фона характеристического излучения по всему диапазону энергий в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента рассчитывают по формуле:

(Emin,i - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, IEmin,i+ΔE - интенсивность характеристического излучения в точке спектра с энергией Emin,i+ΔE).

Документы, цитированные в отчете о поиске Патент 2014 года RU2524454C1

СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИЙ ЭЛЕМЕНТА И ФАЗЫ, ВКЛЮЧАЮЩЕЙ ДАННЫЙ ЭЛЕМЕНТ, В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА 2008
  • Косьянов Петр Михайлович
RU2362149C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ФАЗЫ В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА 2004
  • Косьянов П.М.
RU2255328C1
СПОСОБ КОЛИЧЕСТВЕННОГО РЕНТГЕНОФАЗОВОГО АНАЛИЗА ПОЛИКОМПОНЕНТНЫХ ЦЕОЛИТСОДЕРЖАЩИХ ПОРОД 1994
  • Волкова С.А.
  • Лыгина Т.З.
  • Наумкина Н.И.
  • Дрешер М.Ш.
RU2088907C1
Рентгенофлюоресцентный способ определения общего содержания железа 1978
  • Юкса Лев Константинович
  • Шиян Владимир Яковлевич
SU702281A1
JP 2004184123A, 02.07.2004
US 6678347B1, 13.01.2004

RU 2 524 454 C1

Авторы

Черемисина Ольга Владимировна

Литвинова Татьяна Евгеньевна

Сергеев Василий Валерьевич

Черемисина Елизавета Александровна

Сагдиев Вадим Насырович

Даты

2014-07-27Публикация

2013-04-11Подача