СПОСОБ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА КОНЦЕНТРАЦИИ ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА Российский патент 2021 года по МПК G01N23/223 

Описание патента на изобретение RU2753164C1

Изобретение относится к области определения концентрации элементного состава вещества, по результатам измерений и последующих преобразований интенсивности характеристического рентгеновского излучения в веществах сложного химического и фазового состава, имеющих различную структуру и плотность.

Толкование терминов, используемых в заявке

Рентгенофлуоресцентный анализ - анализ характеристического рентгеновского излучения по всему диапазону длин волн в области спектра от 0,01 до 100 нм (Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. - М.: Химия, 1982. - 208 с. С. 11; ГОСТ 28033-89 Сталь. Метод рентгенофлуоресцентного анализа. М.: Издательство стандартов, 1989. - 10 с. Стр. 1).

Под элементным составом вещества понимается химический состав, включающий химические элементы, химические соединения, ионы, радикалы, изотопы, функциональные группы, группы и классы веществ, обладающие определенными свойствами и т.д. (Альберт Эйнштейн. Собрание научных трудов в четырех томах. - М.: Наука, 1967. - T. 4. - 314 с.).

Известен способ, реализованный в изобретении «Способ определения концентрации фазы в веществе сложного химического состава», патент RU 2255328, G01N 23/20, опубл. 27.06.2005, бюл. № 18. Способ включает определение концентрации элемента и кристаллической фазы, куда входит определяемый элемент в веществе сложного химического состава, включающий облучение пробы анализируемого вещества монохроматическим рентгеновским излучением, регистрацию интенсивности когерентно рассеянного определяемой кристаллической фазой первичного излучения. В способе предусматривается одновременная или последовательная регистрация интенсивности когерентно рассеянного излучения с интенсивностью некогерентного рассеянного первичного излучения этой же пробой, а затем по отношению указанных интенсивностей устанавливается концентрация определяемой фазы.

Известен способ, реализованный в изобретении «Способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава», патент RU №2362149, G01N 23/20, G01N 23/223, опубл. 20.07.2009, бюл. № 20. Изобретение относится к физическим методам анализа химического и фазового состава вещества. Способ включает одновременную регистрацию интенсивности характеристического излучения определяемого элемента, его определяемой фазы и интенсивности когерентно и некогерентно рассеянного (по Комптону) излучений, по отношению указанных интенсивностей определение концентрации элемента и фазы, включающей данный элемент, что позволяет учитывать влияние вещественного состава на результаты анализа (матричный эффект). Отличительной особенностью способа является то, что отношение интенсивности аналитической линии Ii к интенсивности некогерентно рассеянному излучению Inc не зависит от матрицы пробы и может использоваться как аналитический параметр Ki.

Наиболее близким по своей технической сущности и выполняемым функциям аналогом-прототипом к заявленному, является способ, реализованный в изобретении «Способ определения концентрации элемента в веществе сложного химического состава» патент RU № 2524454, G01N 23/20, опубл. 27.07.2014, Бюл. № 21. Изобретение относится к способу определения концентрации элемента (элементов), основанному на измерении характеристического рентгеновского излучения в веществах сложного химического и фазового состава, имеющих различную структуру и плотность. Способ заключается в том, что облучают пробу анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, устанавливают концентрацию определяемого элемента по аналитическому параметру, учитывающему влияние фона характеристического излучения.

Технической проблемой в данной области является низкая чувствительность характеристического излучения из-за отсутствия возможности выявить взаимное влияние внутренних эффектов возбуждения и поглощения, то есть, определить области спектра, которые содержат только значимые аналитические линии с использованием правила 3.

Техническая проблема решается созданием способа рентгенофлуоресцентного анализа определения концентрации элементного состава вещества, обеспечивающего повышение чувствительности характеристического излучения за счет возможности выявления взаимного влияния внутренних эффектов возбуждения и поглощения, то есть, определения области спектра, которые содержат только значимые аналитические линии с использованием правила 3.

Техническая проблема решается тем, что способ рентгенофлуоресцентного анализа определения концентрации элементного состава вещества заключающийся в том, что измеряют спектр характеристического излучения по всему диапазону энергий (длин волн), соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения, согласно изобретению дополнен следующими действиями: аппроксимируют фон, образованный некогерентно рассеянным излучением, устраняют фон, образованный некогерентно рассеянным излучением, определяют первый статистический момент для каждой энергии (длины волны), определяют второй статистический момент для каждой энергии (длины волны), нормируют спектр характеристического излучения по преобразованным интенсивностям некогерентно рассеянного излучения.

Проведенный анализ уровня техники позволяет установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного способа, отсутствуют, что указывает на соответствие изобретения условию патентоспособности «новизна».

Результаты поиска известных решений в данной и смежной областях техники с целью выявления признаков, совпадающих с отличительными от прототипов признаками заявленного изобретения, показывают, что они не следуют явным образом из уровня техники. Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

«Промышленная применимость» способа обусловлена наличием элементной базы, на основе которой могут быть выполнены устройства, реализующие данный способ.

Заявленный способ поясняется чертежами, на которых показаны:

фиг. 1 - Исходный спектр, рассчитанная аппроксимирующая функция, скорректированный спектр (спектр с учетом фона);

фиг. 2 - Сравнение скорректированного исходного спектра с первым и вторым статистическим преобразованием скорректированного спектра.

Реализовать заявленный способ можно в виде последовательности действий, проводимых рентгенофлуоресцентным анализом определения концентрации элементного состава вещества, а именно:

1. Измеряют спектр характеристического излучения по всему диапазону энергий (длин волн), соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения. При этом применяют метод непрерывных измерений с использованием газоанализаторов (РД 52.04.840-2015. Применение результатов мониторинга качества атмосферного воздуха с помощью методов непрерывных измерений. Санкт-Петербург, 2016. - 56 с.).

2. Аппроксимируют фон спектра, образованного некогерентно рассеянным излучением, при этом в спектре фиксируется область рассеяния и проводится аппроксимация области, соответствующей энергии возбуждения - аналитической области. Спектр характеристического излучения с аппроксимируемым фоном формируют с использованием выражения:

(1),

где , - текущая интенсивность, - интенсивность некогерентного рассеяния, - номер аналитического канала, - номер канала линии некогерентного рассеяния, - множитель, нормирующий интенсивность, - постоянная величина, зависящая от материала анода трубки и типа коллиматора.

3. Устраняют фон, образованный некогерентно рассеянным излучением, при этом формируют спектр с учетом влияния эффекта возбуждения интенсивности в аналитической области рассеянным излучением с использованием выражения:

, (2)

где - функция расхождения аппроксимирующей функции от значений исходного спектра, зависящая от энергии (номера канала ) и длины волны возбуждающего излучения , равной (фиг. 1).

На фигуре 1 обозначены:

Красная линия - исходный спектр;

Зеленая линия - аппроксимация фона, обусловленного рассеянным излучением;

Синяя линия - спектр с учетом фона.

4. Определяют первый статистический момент для каждой энергии (длины волны), при этом определяют первый статистический момент для интенсивности каждого канала спектра - Е:

(3)

Первый момент соответствует математическому ожиданию в каждой текущей точке, то есть указывает на интенсивность, соответствующую каналу с учетом предыдущих значений.

5. Определяют второй статистический момент для каждой энергии (длине волны). Второй статистический момент определяется на основе первого статистического момента E:

(4)

Второй момент соответствует дисперсии в каждом канале спектра с учетом первого момента.

6. Нормируют спектр характеристического излучения по интенсивности некогерентно рассеянного излучения. Нормирование проводится делением вторых статистических моментов интенсивностей спектра - Dn на интенсивность некогерентно рассеянного излучения - Dnc:

(5)

При этом ускоряющее напряжение при измерении пробы воды не меняется (иначе изменится длина волны комптоновского рассеяния). Критерием выбора метода нормирования и статистических преобразований является линеаризация зависимости концентрации элементов от измеренной интенсивности (фиг. 2).

На фигуре 2 обозначены:

Красная линия - первый статистический момент скорректированного спектра;

Черная линия - исходный спектр;

Синяя линия - второй статистический момент скорректированного спектра.

Осуществление изобретения произведено на примере спектра пробы воды, полученного аппроксимацией фона (1). Повышение чувствительности характеристического излучения при элементном контроле воды достигается рядом преобразований исходного спектра. Применены преобразования учета фона, соответствующего рассеянному излучению с помощью (2), которые позволяют вычесть влияние интенсивности, возникающей в результате комптоновского рассеяния. Дальнейшее применение статистических преобразований, а именно расчет математического ожидания и дисперсии в каждом аналитическом канале значительно повышают чувствительность характеристического излучения при прочих равных условиях. То есть не меняя аппаратную часть - рентгеновскую трубку, ускоряющее напряжение и детектор, можно повысить ценность рентгенофлуоресцентного анализа при аналитическом контроле качества водных источников в области обнаружения металлов с атомными номерами Z > 20 (фиг.2).

Преобразования первого и второго статистических моментов повышают предел обнаружения на 3-4 порядка, что позволяет снизить предел обнаружения до 10-7%. Расчет дисперсии по всему диапазону энергий полученного спектра приближает зависимость концентраций от интенсивности к линейному виду. Дальнейшая нормировка на некогерентно рассеянное излучение приводит уравнения связи (концентрации и интенсивности) к линейному виду, что при анализе низких концентраций и их расчета методом стандарта - фона снижает количество калибровочных образцов.

Таким образом, решается техническая проблема.

Похожие патенты RU2753164C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА 2013
  • Черемисина Ольга Владимировна
  • Литвинова Татьяна Евгеньевна
  • Сергеев Василий Валерьевич
  • Черемисина Елизавета Александровна
  • Сагдиев Вадим Насырович
RU2524454C1
СПОСОБ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА 2002
  • Макарова Т.А.
  • Бахтиаров А.В.
  • Зайцев В.А.
RU2240543C2
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИЙ ЭЛЕМЕНТА И ФАЗЫ, ВКЛЮЧАЮЩЕЙ ДАННЫЙ ЭЛЕМЕНТ, В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА 2008
  • Косьянов Петр Михайлович
RU2362149C1
СПОСОБ РЕНТГЕНОСПЕКТРАЛЬНОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДОРОДА, УГЛЕРОДА И КИСЛОРОДА В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДОРОДА, УГЛЕРОДА И КИСЛОРОДА В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ 2010
  • Родинков Олег Васильевич
  • Калинин Борис Дмитриевич
  • Плотников Роберт Исаакович
  • Речинский Андрей Андреевич
RU2426104C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ФАЗЫ В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА 2004
  • Косьянов П.М.
RU2255328C1
Способ рентгенофлуоресцентного энергодисперсионного анализа растений 1981
  • Большаков Валентин Алексеевич
  • Сорокин Сергей Егорович
SU1017984A1
Способ количественного рентгенофлуоресцентного анализа трехкомпонентных сред 1971
  • Мейер Владимир Александрович
  • Пшеничный Геннадий Андреевич
  • Катеринов Катерин Стефанович
  • Розуванов Анатолий Павлович
SU444970A1
Способ рентгенофлуоресцентного анализа 1975
  • Богданов Владимир Александрович
  • Верховский Борис Исаакович
  • Загуменнова Валентина Дмитриевна
  • Сотников Виктор Алексеевич
SU648890A1
Способ определения фона в рентгенофлуоресцентном анализе сложных по составу сред 1984
  • Энкер Михаил Борисович
  • Лезин Александр Николаевич
  • Колесов Геннадий Ефимович
  • Коломицин Сергей Юрьевич
  • Пуха Николай Петрович
SU1224688A1
Способ определения массового коэффициента ослабления рентгеновского излучения образцом (его варианты) 1983
  • Конев Александр Васильевич
  • Григорьев Эдуард Васильевич
  • Суховольская Наталья Ефимовна
  • Слободянюк Татьяна Ефимовна
SU1099260A1

Иллюстрации к изобретению RU 2 753 164 C1

Реферат патента 2021 года СПОСОБ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА КОНЦЕНТРАЦИИ ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА

Использование: для рентгенофлуоресцентного анализа определения концентрации элементного состава вещества. Сущность изобретения заключается в том, что измеряют спектр характеристического излучения по всему диапазону энергий, соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения, при этом аппроксимируют фон, образованный некогерентно рассеянным излучением, устраняют фон, образованный некогерентно рассеянным излучением, определяют первый статистический момент для каждой энергии, определяют второй статистический момент для каждой энергии, нормируют спектр характеристического излучения по преобразованным интенсивностям некогерентно рассеянного излучения. Технический результат: повышение чувствительности. 2 ил.

Формула изобретения RU 2 753 164 C1

Способ рентгенофлуоресцентного анализа определения концентрации элементного состава вещества, заключающийся в том, что измеряют спектр характеристического излучения по всему диапазону энергий (длин волн), соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения, отличающийся тем, что аппроксимируют фон, образованный некогерентно рассеянным излучением, устраняют фон, образованный некогерентно рассеянным излучением, определяют первый статистический момент для каждой энергии (длины волны), определяют второй статистический момент для каждой энергии (длины волны), нормируют спектр характеристического излучения по преобразованным интенсивностям некогерентно рассеянного излучения.

Документы, цитированные в отчете о поиске Патент 2021 года RU2753164C1

СПОСОБ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ПРИМЕСЕЙ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ 2014
  • Яфясов Адиль Абдул Меликович
  • Калинин Борис Дмитриевич
  • Плотников Роберт Исаакович
RU2584064C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА 2013
  • Черемисина Ольга Владимировна
  • Литвинова Татьяна Евгеньевна
  • Сергеев Василий Валерьевич
  • Черемисина Елизавета Александровна
  • Сагдиев Вадим Насырович
RU2524454C1
РЕНТГЕНОСПЕКТРАЛЬНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ УГЛЕРОДА В СТАЛЯХ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ УГЛЕРОДА В СТАЛЯХ 2010
  • Калинин Борис Дмитриевич
  • Родинков Олег Васильевич
  • Руднев Александр Владимирович
RU2427825C1
СПОСОБ РЕНТГЕНОВСКОГО ФЛУОРЕСЦЕНТНОГО АНАЛИЗА МАТЕРИАЛОВ 2008
  • Лукьянченко Евгений Матвеевич
  • Плотников Роберт Исаакович
RU2372611C1
JP 2012132826 A, 12.07.2012
JP 2004109072A, 08.04.2004.

RU 2 753 164 C1

Авторы

Аниськов Роман Витальевич

Гордеев Андрей Анатольевич

Игнатьев Андрей Аркадьевич

Саркисов Сергей Владимирович

Черемисин Суад Зухер

Даты

2021-08-12Публикация

2020-10-27Подача