СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ СЛЯБА ДЛЯ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ ПОЛОСЫ Российский патент 2014 года по МПК G01N29/14 

Описание патента на изобретение RU2525584C1

Изобретение относится к акустическим методам неразрушающего контроля и предназначено для контроля поверхностных и внутренних дефектов холодных слябов для производства горячекатаной полосы.

Известен способ определения нарушений сплошности металла в слитках, использующий для выявления дефектов слябов и определения их точного места нахождения метод ультразвукового контроля. Метод использует маркировку сляба для дальнейшей возможности слежения за его трансформациями в процессе прокатки [АС №1117094]. Недостатками данного способа являются значительные затраты времени на проведение контроля, наличие контактных поверхностей, подвергающихся интенсивному износу, высокая требовательность к качеству контакта датчиков с поверхностью, отсутствие четкой классификации степени опасности выявленных в ходе контроля дефектов.

Известен способ контроля поверхностных дефектов горячих слябов, использующий для контроля эффект преобразования дефектами поверхностного слоя металла энергии лазера в акустический сигнал, а для уменьшения влияния помех на регистрируемый сигнал зону контроля охлаждают, что приводит к уменьшению затухания сигналов только в этой области [АС №1453311]. Недостатками этого способа являются необходимость осуществления контроля прохождения датчиков вдоль всей площади поверхности сляба, что значительно затрудняет процесс контроля и удорожает его. Кроме того, способ указывает на наличие несплошностей, их координат и геометрических параметров без выявления других не менее важных характеристик, указывающих на возможность дальнейшего развития дефекта, и невозможность контролировать наличие дефектов во внутреннем слое сляба.

Наиболее близким, выбранным за прототип, является способ контроля сляба для производства горячекатаной полосы [Патент №2404872]. Способ заключается в том, что в контролируемом слябе инициируют акустическую эмиссию и регистрируют ее сигналы. Проводят обработку сигналов и по совокупности полученных данных определяют возможность дальнейшего использования сляба в производстве горячекатаной полосы. При этом для контроля используют холодный сляб, на его поверхности стационарно устанавливают датчики акустической эмиссии в порядке, обеспечивающем контроль всего материала сляба и определение координат источников сигнала. Сляб механически нагружают, используя собственный вес сляба, до напряжений от 20 до 80 процентов предела текучести материала сляба, выдерживают под нагрузкой не менее 1 минуты. Полученные сигналы акустической эмиссии обрабатывают с помощью компьютера, по полученным данным судят о наличии зон повышенной активности изменения структуры материала и возможности дальнейшего развития дефекта в этой зоне при производстве горячекатаной полосы.

Недостатком этого метода является: отсутствие алгоритма определения параметров диагностического нагружения слябов; отсутствие технологии определения наиболее информативных, с точки зрения контроля дефектности полосы, параметров акустической эмиссии, которая позволила бы определить дефектность слябов, что приводит к недостаточной оперативности и точности контроля.

Задачей изобретения является повышение оперативности и точности контроля.

Для решения задачи предложен способ контроля сляба для производства горячекатаной полосы. На поверхности контролируемого сляба, находящегося в холодном состоянии, устанавливают датчики акустической эмиссии. Количество датчиков и порядок их расположения обеспечивает контроль всего материала сляба с определением координат источников сигнала. Затем инициируют излучение сигналов акустической эмиссии с поверхности сляба путем его механического нагружения, которое создают, используя собственный вес сляба, например, поднимают сляб с помощью кранового оборудования. Нагружают сляб до напряжений, близких по модулю к пределу текучести материала сляба, но не превышающих его - от 20 до 80% предела текучести материала сляба. Выдерживают сляб в нагруженном состоянии не менее 1 минуты, затем сляб опускают. В процессе перечисленных выше технологических операций непрерывно осуществляют регистрацию сигналов акустической эмиссии. На первом этапе определяют допустимое значение диагностического параметра, который вычисляют по формуле:

[ W А Э ] = ln ( τ 0 θ T ) + U 0 K T '

где τ0=10-12÷10-14 с - период атомных колебаний; U0/KT=50÷59; U0 - энергия активации процесса разрушения; K - постоянная Больцмана; T - абсолютная температура; θT= - время технологического воздействия валка на раскатываемую часть листа (уточняется по технологическим данным или расчетным путем); θT - время технологического воздействия валка на раскатываемую часть листа вычисляют по формуле:

θ T = 0,5 ( H h ) ( 2 D H + h ) n D π i 60 1000 ,

где D - диаметр рабочей поверхности валков; Н - толщина сляба до обработки; h - толщина сляба после обработки; n - частота вращения двигателя; i - передаточное отношение привода. По полученным при регистрации сигналов АЭ данным определяют диагностический параметр:

W А Э = ln ξ 2 ln ξ 1 K H 2 K H 1 ,

где ξ1, ξ2 - значения информативного акустико-эмиссионного параметра при максимальных напряжениях в сечении σmax1, σmax2 в образце при диагностическом нагружении в разный момент времени; KH1 и KH2 - коэффициенты нагрузки, определяемые по формулам:

K H 2 = σ max 2 σ T , K H 1 = σ max 1 σ T ,

где σT - предел текучести материала. Сравнивают диагностический параметр WАЭ с допустимым значением диагностического параметра [WАЭ]. Критерий состояния пригодного для дальнейшей обработки сляба выглядит следующим образом: WАЭ<[WАЭ]. По полученным данным судят о наличии зон повышенной активности изменения структуры металла в локальных зонах сляба и возможности развития в них дефектов при производстве горячекатаной полосы посредством прокатки. С повышением значения диагностического параметра WАЭ. вероятность проявления дефектов в слябе с перспективой их развития в процессе обработки сляба увеличивается вплоть до необходимости отбраковки сляба. Снижение значения указывает на меньшую дефектность материала сляба.

Определение диагностического параметра WАЭ и сравнение его значения с допустимым позволяет судить о годности сляба и значительно упростить процесс дефектоскопии. Допустимое значение диагностического параметра [WАЭ] может быть определено независимо от объекта контроля на образцах, выполненных из одинакового со слябом материала, и способа нагружения. Таким образом, нет необходимости в определении допустимого диагностического параметра для каждого сляба и проведении длительных дорогостоящих предварительных тарировочных испытаний по оценке допустимого значения диагностического параметра, что повышает оперативность способа контроля.

Проведенные эксперименты зависимости показали высокую степень корреляции параметра WАЭ с параметрами дефектности полосы и малое влияние на точность результатов изменения условий контроля. Значение коэффициента корреляции значений диагностического параметра WАЭ и суммарной длины дефектов для образцов составило 0,74, что подтверждает высокую точность контроля дефектности сляба. Таким образом, отличительные признаки являются необходимыми и достаточными для решения поставленной задачи.

Нагрузка менее 20 процентов не достаточна для инициирования четкого сигнала акустической эмиссии, а нагрузка выше 80 процентов не рекомендуется, в целях устранения возможности случайного превышения напряжений предела текучести и повреждения сляба. Сляб выдерживают в нагруженном состоянии не менее одной минуты, после чего опускают. Данное время необходимо и достаточно для регистрации сигналов акустической эмиссии, больший промежуток времени не целесообразен, так как при увеличении затрат времени результат остается прежним. После опускания сляба регистрацию сигналов акустической эмиссии прекращают.

В зависимости от требуемой точности количество и способы расположения пьезоэлектрических датчиков могут варьироваться (для обеспечения распознавания пространственных, плоских, или линейных координат расположения дефектов), при этом число датчиков, в зону действия которых входит любая точка сляба, должно быть на один больше, чем число осей координат, по которым проводится контроль, а их расположение должно обеспечивать однозначное определение любой точки на слябе, входящей в зону их контроля, относительно их местоположения как геометрическое место точек, имеющих определенную разность расстояний до датчиков. Длина сляба подобрана в соответствии с параметрами материала, при поднятии сляба с помощью кранового оборудования, напряжения, возникающие внутри сляба, близки к пределу текучести, но не превышают его. Таким образом, нагружая сляб собственным весом с помощью кранового оборудования, в слябе возникают напряжения, достаточные для инициации акустической эмиссии, в то же время нет перекрытия сигналов, связанных с пластическими деформациями в материале. Эти напряжения схожи с напряжениями, действующими в слябе во время производства горячекатаной полосы, а сигналы акустической эмиссии, зарегистрированные в момент действия этих сил, дают информацию о возможных зонах образования и развития дефектов при прокатке. В целях предупреждения возникновения помех, вносящих искажения в полученные результаты, не следует применять крановое оборудование с электромагнитным устройством фиксации груза для подъема сляба во время нагружения. В течение всех вышеперечисленных операций осуществляют регистрацию сигналов акустической эмиссии. После окончания нагружения датчики снимают со сляба.

Реализация способа проводилась при диагностировании годного сляба в ходе промышленных экспериментов. Нагружение холодного сляба его собственным весом производилось с использованием кранового оборудования, что привело к появлению максимальных растягивающих напряжений на поверхности, составляющих 40-60% от предела текучести и обеспечило высокую вероятность регистрации сигналов акустической эмиссии. Датчики акустической эмиссии устанавливали в средней части холодного сляба на расстоянии около 2 м друг от друга (наибольшее расстояние, обеспечивающее высокую вероятность приема сигнала для данного объекта). Для регистрации импульсов акустической эмиссии использовали двухканальную измерительную акустико-эмиссионную систему. На первом этапе определяли допустимое значение диагностического параметра:

[ W А Э ] = ln ( τ 0 θ T ) + U 0 K T '

где τ0=10-12÷10-14 с - период атомных колебаний; U0/KT=50÷59; U0 - энергия активации процесса разрушения; K - постоянная Больцмана; T - абсолютная температура; время технологического воздействия валка на раскатываемую часть листа θT=0,19 взято из технологический данных.

[ W А Э ] = ln ( 10 12 ÷ 10 14 0,19 ) + 50 ÷ 59 20 ÷ 30 .

При обработке результатов регистрации сигналов АЭ определяли значение диагностического параметра WАЭ. В качестве первичного информативного параметра акустической эмиссии используется суммарное число импульсов. На фигуре 1 представлены графики временных зависимостей логарифма суммарного числа сигналов (1) для стального сляба и роста значений напряжений (2); прямоугольником выделен участок, используемый для определения диагностического параметра WАЭ, соответствующий однородному разрушению перед возникновением локальной текучести. Максимальными напряжениями σmax1, σmax2 являются напряжения, соответствующие максимальным и минимальным напряжениям выделенного участка.

W А Э = ln ξ 2 ln ξ 1 K H 2 K H 1 ,

где lnξ1=ln8=2.08; lnξ2=ln31=3.43 - значения информативного акустико-эмиссионного параметра при максимальных напряжениях в сечении σmax1=180 МПа, σmax2=240 МПа в образце при диагностическом нагружении в разный момент времени; KH1 и KH2 - коэффициенты нагрузки, определяемые по формулам:

K H 2 = σ max 2 σ T , K H 1 = σ max 1 σ T ;

σT=500 МПа - предел текучести материала сляба.

K H 2 = 240 500 = 0,48 ; K H 1 = σ max 1 500 = 0,36 .

W А Э = 31 8 0,48 0,36 = 11,2 .

Полученное значение диагностического параметра не превышает допустимое значение диагностического параметра WАЭ<[WАЭ], что, согласно предложенному диагностическому признаку, позволяло отнести диагностируемый сляб к заготовке удовлетворительного качества.

Способ позволяет повысить оперативность и точность контроля, классифицировать дефекты не по косвенным признакам (размер, расположение, форма дефекта), имеющим влияние на качество полученного проката, а по таким характеристикам, как перспективность развития дефекта в локальных зонах и влияние изменения действующих напряжений на активность изменения структуры сляба. Отличительной чертой способа является также использование только механического нагружения, так как использование других может привести к появлению акустических помех, несущих ложную информацию о качестве сляба.

Похожие патенты RU2525584C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ СЛЯБА ДЛЯ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ ПОЛОСЫ 2009
  • Носов Виктор Владимирович
  • Лаврин Валентин Георгиевич
RU2404872C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ МАТЕРИАЛА ИЗДЕЛИЯ 2010
  • Носов Виктор Владимирович
  • Лахова Екатерина Николаевна
RU2445615C1
Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии 2016
  • Шевченко Владимир Григорьевич
  • Еселевич Данил Александрович
  • Конюкова Алла Вячеславовна
  • Чупова Ирина Анатольевна
  • Рябина Анна Владимировна
  • Конюков Игорь Валентинович
  • Селиванова Алина Игоревна
RU2638395C1
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПРОЧНОСТИ ИЗДЕЛИЙ 2004
  • Носов Виктор Владимирович
  • Михайлов Юрий Клавдиевич
  • Базаров Дмитрий Анатольевич
  • Бураков Игорь Николаевич
RU2270444C1
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА 2016
  • Носов Виктор Владимирович
  • Зеленский Николай Алексеевич
  • Матвиян Илья Викторович
  • Ямилова Алсу Римовна
RU2617195C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАПАСА ПРОЧНОСТИ НАГРУЖЕННОГО МАТЕРИАЛА 1998
  • Петров В.А.
RU2167421C2
СПОСОБ ОЦЕНКИ КАЧЕСТВА УПРОЧНЯЮЩИХ ТЕХНОЛОГИЙ 2021
  • Носов Виктор Владимирович
  • Григорьев Егор Витальевич
RU2775855C1
АКУСТИКО-ЭМИССИОННЫЙ СПОСОБ РАННЕГО ВЫЯВЛЕНИЯ ПОВРЕЖДЕНИЙ В ДЕФОРМИРУЕМЫХ АЛЮМИНИЕВЫХ СПЛАВАХ 2015
  • Шибков Александр Анатольевич
  • Желтов Михаил Александрович
  • Золотов Александр Евгеньевич
  • Денисов Андрей Александрович
  • Гасанов Михаил Фахраддинович
RU2618760C1
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПРОЧНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ 2010
  • Носов Виктор Владимирович
  • Ельчанинов Григорий Сергеевич
  • Тевосянц Давид Сергеевич
RU2445616C1
АКУСТИКО-ЭМИССИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТИПА ДЕФЕКТА СТРУКТУРЫ ОБРАЗЦА ИЗ УГЛЕПЛАСТИКА 2017
  • Степанова Людмила Николаевна
  • Батаев Владимир Андреевич
  • Лапердина Наталья Андреевна
  • Чернова Валентина Викторовна
RU2676209C9

Реферат патента 2014 года СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ СЛЯБА ДЛЯ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ ПОЛОСЫ

Использование: для контроля дефектности сляба. Сущность изобретения заключается в том, что выполняют установку датчиков акустической эмиссии на поверхности холодного сляба в порядке, обеспечивающем контроль всего материала сляба, механическое нагружение сляба за счет использования собственного веса сляба до напряжений от 20 до 80% предела текучести материала сляба, выдержку под нагрузкой не менее 1 мин, регистрацию сигналов акустической эмиссии и их обработку, определение координат источников акустической эмиссии и определение возможности дальнейшего использования сляба в производстве горячекатаной полосы путем сравнения диагностического параметра WАЭ с допустимым значением диагностического параметра [WАЭ] и при WАЭ>[WАЭ] сляб считают непригодным для дальнейшей прокатки. Технический результат: повышение оперативности и точности контроля. 1 ил.

Формула изобретения RU 2 525 584 C1

Способ контроля дефектов сляба для производства горячекатаной полосы, включающий инициирование акустической эмиссии путем установки датчиков акустической эмиссии на поверхности холодного сляба в порядке, обеспечивающем контроль всего материала сляба и определение координат источников сигнала акустической эмиссии, механическое диагностическое нагружение сляба за счет использования собственного веса сляба до напряжений от 20 до 80% предела текучести материала сляба, выдержку под нагрузкой не менее 1 мин, обработку результатов регистрации сигналов акустической эмиссии, определение возможности дальнейшего использования сляба в производстве горячекатаной полосы, отличающийся тем, что на первом этапе определяют допустимое значение диагностического параметра:
,
где τ0=10-12÷10-14 с - период атомных колебаний; θT - время технологического воздействия валка на раскатываемую часть листа (уточняется по технологическим данным или расчетным путем); U0/KT=50÷59; U0 - энергия активации процесса разрушения; K - постоянная Больцмана; T - абсолютная температура, и далее при обработке сигналов с датчиков определяют значение диагностического параметра:
,
где ξ1, ξ2 - значения первичного информативного акустико-эмиссионного параметра при максимальных напряжениях в сечении σmax1, σmax2 в слябе при диагностическом нагружении в разный момент времени; KH1 и KH2 - коэффициенты нагрузки, определяемые по формулам:
, ,
где σT - предел текучести материала,
сравнивают диагностический параметр WАЭ с допустимым значением диагностического параметра [WАЭ] и при WАЭ>[WАЭ] сляб считают непригодным для дальнейшей прокатки.

Документы, цитированные в отчете о поиске Патент 2014 года RU2525584C1

СПОСОБ КОНТРОЛЯ СЛЯБА ДЛЯ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ ПОЛОСЫ 2009
  • Носов Виктор Владимирович
  • Лаврин Валентин Георгиевич
RU2404872C1
Способ контроля поверхностных дефектов горячих слябов 1987
  • Эмитрук Валерий Федорович
  • Павленко Игорь Павлович
  • Урусов Валерий Сергеевич
  • Олифиренко Николай Владимирович
SU1453311A1
ЭЛЕКТРИЧЕСКИЙ РТУТНЫЙ ВЫКЛЮЧАТЕЛЬ 1924
  • Уманский Б.М.
SU3818A1
US 4175442A, 27.11.1979
US 6666094B1, 23.12.2003

RU 2 525 584 C1

Авторы

Носов Виктор Владимирович

Синчугов Илья Сергеевич

Даты

2014-08-20Публикация

2012-12-27Подача