СПОСОБ ПОЛУЧЕНИЯ СОЛЬВАТА ХЛОРИДА НЕОДИМА С ИЗОПРОПИЛОВЫМ СПИРТОМ ДЛЯ НЕОДИМОВОГО КАТАЛИЗАТОРА ПОЛИМЕРИЗАЦИИ ИЗОПРЕНА Российский патент 2014 года по МПК C01F17/00 C08F4/44 B01J37/04 

Описание патента на изобретение RU2526981C2

Изобретение относится к нефтехимической промышленности и может быть использовано в производстве неодимового 1.4-цис-полизопрена, который является продуктом растворной полимеризации изопрена в присутствии каталитической системы, содержащей неодим.

Неодимовые каталитические системы проявляют высокую активность и 1,4-цис-специфичность при полимеризации изопрена в том случае, если галогенид неодима находится в виде комплексного соединения с органическим лигандом. Последним могут являться одноатомные алифатические спирты. Поэтому процесс получения неодимового катализатора состоит из следующих стадий: получение сольвата хлорида неодима с органическим лигандом, взаимодействие полученного сольвата с алюминий органической компонентой катализатора.

Известен способ получения спиртовых сольватов хлорида неодима из оксидов неодима [RU 2039706 С1, 20.07.1995]. Согласно этому способу процесс образования сольвата хлорида неодима протекает при взаимодействии оксида неодима с соляной кислотой в среде изопропилового спирта (ИПС). После чего осуществляют отгонку избытка спирта в присутствии жидкого парафина с температурой начала кипения 220-270°С с одновременным формированием дисперсии спиртового сольвата.

Недостатками данного способа получения изопропанольного сольвата хлорида неодима являются: многостадийность процесса; наличие соляной кислоты, приводящей к износу оборудования; низкое содержание изопропилового спирта в составе комплексного соединения с хлоридом неодима. Эти факторы приводят к значительному повышению энерго- и металлоемкости производства неодимового катализатора с недостаточно высокой активностью, что, в свою очередь, определяет высокую себестоимость изопренового каучука.

Целесообразным в этом случае является прямой синтез спиртового сольвата из хлорида неодима в среде жидкого парафина. Наиболее близким к данному изобретению является способ [RU 2220909, 10.01.2004]. Согласно этому способу после смешения хлорида неодима с одноатомным алифатическим спиртом, которым является бутанол (БС), при мольном соотношении гексагидрат хлорида неодима:бутанол 1:45, осуществляют отгонку азеотропной смеси вода-бутанол при пониженном давлении. Далее проводят реакцию спиртового обмена путем разбавления образовавшегося концентрированного спиртового раствора хлорида неодима изопропанолом в среде жидкого парафина. В этом случае мольное соотношение хлорид неодима:ИПС составляет 18. После чего избыток смеси спиртов отгоняют в роторно-пленочном испарителе. В результате получают продукт, в котором мольное соотношение NdCl3:БC:ИПС составляет 1:0,4:2,2. Полученный сольват хлорида неодима характеризуется средним диаметром частиц твердой фазы, равным 1.2-1.6 мкм.

Синтез сольватов хлорида неодима данным способом исключает применение коррозионно-активных гидрохлорирующих агентов (таких как соляная кислота) и образование побочных продуктов в виде оксихлоридов неодима, которые существенно снижают активность неодимового катализатора при полимеризации. Недостатками способа являются сложность проведения некоторых стадий, повышенный расход хлорида неодима и изопропилового спирта, что приводит к нерациональному использованию дорогостоящих компонентов.

Кроме того, указанные способы получения изопропанольного сольвата хлорида приводят к образованию суспензии с весьма крупными размерами частиц и неоднородным содержанием изопропилового спирта. Поэтому полученный неодимовый катализатор проявляет недостаточно высокую активность при полимеризации изопрена, что наряду с повышенными расходами исходных компонентов каталитической системы, значительно ограничивает освоение этих катализаторов в крупнотоннажном синтезе изопренового каучука.

Задача, на решение которой направлено данное изобретение, заключается в разработке способа получения сольвата хлорида неодима с ИПС для неодимового катализатора, позволяющего повысить эффективность последнего при полимеризации изопрена.

В заявленном техническом решении результат достигается тем, что на стадии синтеза сольвата хлорида неодима смешением хлорида неодима с однотомным алифатическим спиртом - ИПС, осуществляют гидродинамическое воздействие в трубчатом турбулентном реакторе диффузор-конфузорной конструкции, при этом используют осушенный хлорид неодима, мольное соотношение вода:хлорид неодима не более 0.8, в виде 3-13 масс.% (по неодиму) суспензии в жидком парафине.

Сущность изобретения заключается в следующем. Процесс образования комплекса хлорида неодима с ИПС относится к классу топохимических реакций, скорость которых существенно зависит от размеров частиц твердой фазы [Розовский А.Я. Кинетика топохимических реакций. М.: Химия, 1974. 220 с.] (в данном случае исходного хлорида неодима). Как следствие, состав комплекса, т.е. мольное отношение ИПС:Nd, определяется скоростью вхождения лиганда в координационную сферу атома неодима. Процесс комплексоообразования протекает на поверхности частиц хлорида неодима с медленной скоростью, которая зависит от размеров его частиц. Гидродинамическое воздействие в турбулентных потоках приводит к диспергированию частиц хлорида неодима, а следовательно, увеличивает скорость комплесообрзования. В результате процесс протекает в условиях, максимально приближенных к модели сжимающейся сферы, что, согласно представлениям кинетики топохимических реакций, приводит к образованию тонкодисперсной суспензии изопропанольного сольвата хлорида неодима с однородным содержанием лиганда.

Преимущества предлагаемого способа заключаются в повышении скорости топохимической реакции комплексообразовния хлорида неодима с ИПС за счет гидродинамического воздействия в турбулентном реакторе диффузор-конфузорной конструкции. Это приводит к снижению размеров его частиц до 0.04-0.06 мкм, вместо 0.2-1.6 мкм, и повышению содержания ИПС в сольвате до мольного отношения к хлориду неодима 2.5-3.0, необходимого для проявления высокой каталитической активности при полимеризации изопрена.

Сущность изобретения подтверждается следующими примерами.

Пример 1 (по прототипу). В аппарат загружаются хлорид неодима в виде гексагидрата и бутанол при мольном отношении гексагидрата к спирту 1:45. Полученная смесь нагревается при перемешивании до 55°С, затем при остаточном давлении в аппарате 50 мм рт.ст. отгоняется гомогенная азеотропная смесь бутанол-вода. При постепенном уменьшении остаточного давления до 30 мм рт.ст. далее отгоняется безводный бутанол. Вакуум стравливается азотом, и к полученному раствору приливается сначала нагретый до 70°С изопропанол, а затем жидкий парафин. Мольное соотношение ИПC:Nd составляет 18. Избыток спиртов отгоняется в роторно-пленочном испарителе при остаточном давлении 30 мм рт.ст. Состав продукта характеризуется мольным соотношением BdСl3:БС:ИПС=1:0,4:2,2.

Пример 2 (контрольный). В аппарат загружается осушенный хлорид неодима с мольным соотношением вода:хлорид неодима 0.8 и жидкий парафин в количествах, необходимых для получения 9 масс.% суспензии по неодиму. При механическом перемешивании мешалкой вводится ИПС. Начальное мольное соотношение ИПС:Nd равно 3. Далее при постоянном перемешивании процесс комплексообразования проводят в течение 6-8 часов для достижения требуемой конверсии комплекса хлорида неодима с ИПС.

Пример 3 (по изобретению). В аппарат загружается осушенный хлорид неодима, в котором соотношение вода:хлорид неодима, также как в примере 2, равно 0.8, и жидкий парафин в количествах, необходимых для получения 9 масс.% суспензии по неодиму. При механическом перемешивании мешалкой вводится ИПС. Мольное соотношение ИПC:Nd равно 3. Сразу же после ввода ИПС осуществляется гидродинамическое воздействие в трубчатом турбулентном реакторе диффузор-конфузорной конструкции в импульсном режиме при скорости движения реакционной смеси не ниже 1 м/с. После чего реакционная смесь подается на перемешивание механической мешалкой, продолжительность которого составляет 6-8 часов.

Полученные изопропанольные сольваты хлорида неодима использовались для приготовления неодимового катализатора с триизобутилалюминием и пипериленом. Полимеризацию изопрена проводили в герметичных реакторах в атмосфере аргона. В реактор загружали раствор изопрена в изопентане, а затем вводили неодимовый катализатор. Концентрация изопрена в реакционной смеси 1.5 моль/л, катализатора (по неодиму) 1 ммоль/л.

Данные по примерам 1-3 объедены в таблице 1.

Таблица 1. Некоторые показатели процесса синтеза изопропанольного сольвата хлорида неодима, полимеризации изопрена и 1,4-цис-полиизопрнена Показатель Пример 1 Пример 2 Пример 3 Синтез сольвата хлорида неодима Массовая концентрация неодима в суспензии в жидком парафине, масс.% 9 9 9 Соотношение ИПС:Nd в комплексе хлорида неодима с ИПС 2.2 1.75 2.8 Средний размер частиц комплекса, мкм 1.2-1.6 0.2-0.5 0.04-0.06 Полимеризация изопрена Выход 1,4-цис-полиизопрена за 1 час полимеризации, % 60 50 85 1,4-цис-полиизопрен Коэффициент полидисперсности ММР 1,4-цис-полиизопрена 3.1 3.5 3.2

В таблице 2 приведены данные по примерам 4-7, показывающим влияние содержания воды в хлориде неодима, а также концентрации хлорида неодима в суспензии в жидком парафине на свойства сольвата хлорида неодима и полимеризацию изопрена. Полученные данные свидетельствуют о том, что оптимальной концентрацией неодима в суспензии в жидком парафине и мольное соотношение вода:хлорид неодима, обеспечивающими размер частиц комплекса 0.04-0.06 мкм и содержание ИПС в сольвате до мольного отношения к хлориду неодима 2.5-3.0, являются, соответственно, 3-13 масс.% и не более 0.8. В этих условиях удается сформировать высокоактивный в полимеризации изопрена (максимальный выход полимера 85% за 1 час) неодимовый катализатор, который позволяет получать 1,4-цис-полиизопрен с коэффициентом полидисперсности 3.2.

Таблица 2. Влияние содержания воды и концентрации хлорида неодима в суспензии на свойства сольвата хлорида неодима и полимеризацию изопрена При-мер Соотношение вода:хлорид неодима, моль Массовая концентрация неодима в суспензии, масс.% Средний размер частиц комплекса, мкм Соотношение ИПС:Nd в комплексе хлорида неодима с ИПС Выход 1,4-цис-полиизопрена за 1 час полимеризации, % Коэффициент полидисперсности ММР 1,4-цис-полиизопрена 1 0.02-0.04 1.95 65 6.8 3 0.04-0.06 2.10 71 6.3 4 0.3 9 0.04-0.06 2.5 80 4.5 13 0.05-0.06 2.7 83 4.4 20 0.07-0.09 1.93 70 6.7 1 0.03-0.05 1.90 66 4.8 3 0.04-0.06 2.5 79 3.5 5 0.8 9 0.04-0.06 2.8 85 3.2 13 0.04-0.06 2.7 81 3.7 20 0.07-0.09 2.1 78 5.2 1 0.07-0.09 1.99 69 4.9 3 0.08-0.09 1.97 67 5.3 6 1.5 9 0.09-0.20 1.93 63 6.7 13 0.10-0.35 1.88 60 7.2 20 0.20-0.45 1.73 55 7.1 1 0.08-0.25 1.5 53 6.7 3 0.10-0.35 1.45 50 6.9 7 2.8 9 0.25-0.55 1.40 48 7.1 13 0.35-0.60 1.37 47 6.8 20 0.35-0.7 1.35 45 4.9

Таким образом, предлагаемый способ получения сольвата хлорида неодима с изопропиловым спиртом позволяет существенно снизить размер частиц получаемой суспензии сольвата хлорида неодима и повысить до необходимого уровня содержание ИПС в сольвате. Эти факторы определяют высокую активность неодимового катализатора при полимеризации изопрена.

Похожие патенты RU2526981C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЛАНТАНОИДНОГО КАТАЛИЗАТОРА ДЛЯ СТЕРЕОСПЕЦИФИЧЕСКОЙ ПОЛИМЕРИЗАЦИИ ИЗОПРЕНА И ЦИС-1,4-ПОЛИИЗОПРЕН, ПОЛУЧЕННЫЙ НА ЭТОМ КАТАЛИЗАТОРЕ 2019
  • Насыров Ильдус Шайхитдинович
  • Жаворонков Дмитрий Александрович
  • Фаизова Виктория Юрьевна
  • Динисламов Ильдар Маратович
  • Шурупов Олег Константинович
  • Захаров Вадим Петрович
  • Захарова Елена Михайловна
RU2693474C1
ИЗОПРЕНОВЫЙ КАУЧУК И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Кормер Виталий Абрамович
  • Бубнова Светлана Васильевна
  • Дуйко Любовь Витальевна
  • Федоров Владимир Алексеевич
RU2374271C1
СПОСОБ ПОЛУЧЕНИЯ СПИРТОВЫХ СОЛЬВАТОВ ХЛОРИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ 2008
  • Васильев Валентин Александрович
  • Бодрова Вера Сергеевна
  • Бубнова Светлана Васильевна
  • Дроздов Борис Трофимович
  • Пассова Светлана Соломоновна
  • Баженов Юрий Петрович
  • Ильин Владимир Михайлович
  • Насыров Ильдус Шайхитдинович
RU2438981C2
Способ получения каталитического комплекса и цис-1,4-полиизопрен, полученный с использованием этого каталитического комплекса 2017
  • Насыров Ильдус Шайхитдинович
  • Жаворонков Дмитрий Александрович
  • Фаизова Виктория Юрьевна
  • Шурупов Олег Константинович
  • Васильев Валентин Александрович
  • Левковская Екатерина Игоревна
RU2668977C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ПОЛИМЕРИЗАЦИИ ИЗОПРЕНА 2018
  • Левковская Екатерина Игоревна
  • Новикова Екатерина Сергеевна
  • Сендерская Евгения Евгеньевна
  • Чернявский Григорий Геннадьевич
  • Пассова Светлана Соломоновна
RU2684280C1
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИИЗОПРЕНА 2013
  • Баженов Юрий Петрович
  • Жаворонков Дмитрий Александрович
  • Насыров Ильдус Шайхитдинович
  • Петрунина Александра Васильевна
  • Фаизова Виктория Юрьевна
RU2539655C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ПОЛИМЕРИЗАЦИИ ИЗОПРЕНА 1994
  • Бодрова В.С.
  • Кормер В.А.
  • Пискарева Е.П.
  • Полетаева И.А.
  • Шелохнева Л.Ф.
  • Баженов Ю.П.
  • Кутузов П.И.
  • Рахимов Р.Х.
  • Клепикова В.И.
RU2061546C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРОВ И СОПОЛИМЕРОВ СОПРЯЖЕННЫХ ДИЕНОВ (ВАРИАНТЫ) 2009
  • Бусыгин Владимир Михайлович
  • Гильманов Хамит Хамисович
  • Гильмутдинов Наиль Рахматуллович
  • Ахметов Ильдар Гумерович
  • Салахов Ильдар Ильгизович
  • Ахметова Диляра Равилевна
  • Вагизов Айдар Мизхатович
  • Сахабутдинов Анас Гаптынурович
  • Амирханов Ахтям Талипович
  • Беланогов Игорь Анатольевич
  • Мисбахов Ильяс Рафикович
RU2422468C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ПОЛИМЕРИЗАЦИИ БУТАДИЕНА 2018
  • Левковская Екатерина Игоревна
  • Новикова Екатерина Сергеевна
  • Сендерская Евгения Евгеньевна
  • Чернявский Григорий Геннадьевич
RU2684282C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ПОЛИМЕРИЗАЦИИ И СОПОЛИМЕРИЗАЦИИ НЕНАСЫЩЕННЫХ УГЛЕВОДОРОДОВ 1998
  • Кормер В.А.
  • Бубнова С.В.
  • Шелохнева Л.Ф.
  • Бодрова В.С.
RU2141382C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ СОЛЬВАТА ХЛОРИДА НЕОДИМА С ИЗОПРОПИЛОВЫМ СПИРТОМ ДЛЯ НЕОДИМОВОГО КАТАЛИЗАТОРА ПОЛИМЕРИЗАЦИИ ИЗОПРЕНА

Изобретение относится к нефтехимической промышленности и может быть использовано в производстве неодимового 1.4-цис-полизопрена. Способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена осуществляют смешением хлорида неодима с изопропиловым спиртом, при этом на стадии синтеза сольвата хлорида неодима осуществляют гидродинамическое воздействие в трубчатом турбулентном реакторе диффузор-конфузорной конструкции. Изобретение позволяет существенно снизить размер частиц получаемой суспензии сольвата и обеспечивает получение неодимового катализатора высокой активности для полимеризации изопрена. 2 з.п. ф-лы, 2 табл., 3 пр.

Формула изобретения RU 2 526 981 C2

1. Способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена смешением хлорида неодима с изопропиловым спиртом отличающийся тем, что на стадии синтеза сольвата хлорида неодима осуществляют гидродинамическое воздействие в трубчатом турбулентном реакторе диффузор-конфузорной конструкции.

2. Способ по п.1, отличающийся тем, что используют осушенный хлорид неодима с мольным соотношением вода : хлорид неодима не более 0.8.

3. Способ по пп.1, 2, отличающийся тем, что используется 3-13 мас.% суспензия хлорида неодима в жидком парафине.

Документы, цитированные в отчете о поиске Патент 2014 года RU2526981C2

СПОСОБ ПОЛУЧЕНИЯ СПИРТОВОГО СОЛЬВАТА ХЛОРИДА НЕОДИМА 2002
  • Насыров И.Ш.
  • Баженов Ю.П.
  • Абдуллин А.Н.
  • Бокин А.И.
  • Искаков Б.А.
  • Петрунина А.В.
RU2220909C2
СПОСОБ НЕПРЕРЫВНОЙ РАСТВОРНОЙ СОПОЛИМЕРИЗАЦИИ И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Берлин А.А.
  • Минскер К.С.
  • Дебердеев Р.Я.
  • Галиев Р.Г.
  • Рязанов Ю.И.
  • Зиятдинов А.Ш.
  • Погребцов В.П.
  • Абзалин З.А.
  • Бурганов Т.Г.
  • Воробьев А.И.
  • Блинов А.А.
  • Баев Г.В.
RU2141872C1
СПОСОБ ПОЛУЧЕНИЯ СПИРТОВЫХ СОЛЬВАТОВ ХЛОРИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ 1992
  • Глухов В.П.
  • Кормер В.А.
  • Полетаева И.А.
  • Ульянов В.М.
  • Шелохнева Л.Ф.
  • Баженов Ю.П.
  • Кутузов П.И.
  • Рахимов Р.Х.
  • Абдрашитов Я.М.
RU2039706C1
Способ получения спиртовых сольватов хлоридов редкоземельных элементов 1988
  • Баженов Юрий Петрович
  • Варшавский Юрий Сергеевич
  • Гальдинг Маргарита Ростиславовна
  • Евдокимова Зоя Хайдаровна
  • Киселева Нонна Викторовна
  • Клепикова Викторина Ивановна
  • Кормер Виталий Абрамович
  • Кутузов Петр Ильич
  • Морозов Юрий Дмитриевич
  • Петрунина Александра Васильевна
  • Полетаева Ирина Александровна
  • Федоров Давыд Васильевич
  • Черкасова Татьяна Георгиевна
  • Шелохнева Лина Федоровна
  • Юфа Татьяна Львовна
SU1567519A1
US 5017539 A, 21.05.1991

RU 2 526 981 C2

Авторы

Мингалеев Вадим Закирович

Захаров Вадим Петрович

Морозов Юрий Витальевич

Насыров Ильдус Шайхитдинович

Берлин Александр Александрович

Даты

2014-08-27Публикация

2012-07-11Подача