Изобретение относится к химической промышленности, в частности к производству наполнителей для резиновых смесей на основе углерода, порошков диоксида кремния. В производстве резины широко применяются различные наполнители, улучшающие свойства резин и придающие им специфические свойства. В качестве наполнителей применяют сажу, технический углерод, фуллерены, нафталин, антрацен, фенантрен, ароматические углеводороды, предварительно нанесенные на поверхность технического углерода; аморфный кремнезем, кремнекислотные соединения, тальк и др. (см. Кошелев Ф.Ф. и др. Общая технология резины, 4-е изд. М., 1978. Федюкин Д.Л., Махлис Ф.А. Технические и технологические свойства резин, М., 1985).
Известно (см. Справочник резинщика. Материалы резинового производства, М.,1971 г.; ГОСТ 7885-86. Углерод технический для производства резины), что углерод различных модификаций наиболее широко применяют в качестве наполнителя в резинах. Это сажи (технический углерод) разных марок (канальная, печная, термическая), получаемые при 1100-1900°С, например, П-234, П-702, П-803, К-354 с удельной поверхностью 10-300 м2/г, размером первичных частиц 10-50 нм и хлопьев 40-140 мкм. Технический углерод содержит некоторое количество примесей, мас.%: серы (до 1,1), хемосорбированных водорода, азота, кислорода, минеральных примесей (до 0,45), окалины (Fe2O3 до 0,5). Примеси значительно ухудшают показатели качества резин, поэтому сажи очищают от минеральных примесей и окалины; рН водной суспензии технического углерода 7,5-9,5. Сажи - это сильно пылящие порошки, которые легко агломерируются и сегрегируют в процессе замешивания в каучук. Полученные резины в процессе истирания, например, при эксплуатации автомобильных шин истираются с выделением сажи в атмосферу. Для устранения этих недостатков сажу плакируют силанами для улучшения взаимодействия с каучуком, а затем агломерируют в гранулы размером 0,5-1,5 мм. Однако, создавая гранулы, уменьшается поверхность взаимодействия сажи с каучуком, что снижает усиливающий эффект от введения.
Известно использование в резинах аморфного диоксида кремния (осажденного из раствора силиката натрия) марок БС-У-333, БС-120, БС-150/300 («белая сажа») с удельной поверхностью 30-50 и 150 м2/г, соответственно, диаметром частиц 5-40 нм и диоксида кремния марки «Аэросил», осажденного из газовой фазы SiCl4, с удельной поверхностью 300-400 м2/г, диаметром первичных частиц 2-10 нм. (См. сайт http://www.74rif.ru/saga-rez.html; пат. РФ №2421484 от 20.06.2011 «Вещества для улучшения технологических свойств для эластомерных смесей»).
Осаждение из раствора силиката ведут путем воздействия на него кислотой при комнатной температуре с последующей многократной промывкой обессоленной водой; осаждение из газовой фазы происходит при сжигании SiCl4 в смеси водорода и кислорода при 600-800°С. Использование таких порошков дает заметный эффект в улучшении технологического процесса приготовления смесей - при замешивании резин снижается прилипаемость резины к валкам; облегчается каландрирование; возрастают некоторые характеристики резин - твердость и прочность, но требуется вводить больше серы; снижается усадка резины; увеличивается адгезия к тканям.
Недостатками являются: повышение стоимости резины вследствие более высокой цены диоксида кремния по сравнению с сажей; снижение сопротивления истиранию резины вследствие невысокой адгезии частиц порошка диоксида кремния с каучуком.
Поэтому предпринимаются попытки модифицировать поверхность диоксида кремния или нанести на нее особые вещества с высоким сродством с каучуком, например кремнийорганическое соединение бис-3-(триэтоксисилилпропил)-тетрасульфан(C2H5O)3-Si-СН2-СН2-СН2-Sx-СН2-CH2-CH2-Si-(OC2H5)3. Добавляют также смесь силана (72%) и силиката кальция (28%) (см. пат. РФ №2421484, опубл. 20.06.2011 г.). Указанные вещества химически взаимодействуют с силанольными группами поверхности частиц диоксида кремния; в результате поверхность покрывается привитыми молекулами модификатора и меняются свойства поверхности (повышается гидрофобность). При замешивании в каучук снижается вязкость смесей, так как молекулы модификатора взаимодействуют сначала с серой и далее с молекулами каучука. В результате повышаются прочность, снижается истираемость резин, улучшается сцепление автомобильных шин с дорогой (cм. http://www.Polymtry.ru/letter.).
Недостатком такого наполнителя является высокая стоимость. Известно применение искусственной смеси SiO2+C. При этом частицы SiO2 имеет удельную поверхность 20-80, углерод 80-130 м2/г. Указанную смесь получают методом гидролиза силиката натрия в суспензии технического углерода, (см. сайт www.shinaplus.ru; сайт http://www.74rif.ru/saga-rez.html).
Недостатком этого метода является то, что сложно управлять составом и получить заданное значение диоксида кремния и углерода в порошке.
Известен минеральный наполнитель к резинам, содержащий SiO2 и другие оксиды - СаСО3+MgO+Mg(ОН)2+SiO2+Fe(ОН)3+Al(ОН)3, получаемый из шлама, образующегося при известковании и коагуляции сырой воды на водоподготовительных установках тепловых электростанций (см. пат. РФ 2425848 от 27.10.2009. «Минеральный наполнитель к резинам на основе винилсилоксанового каучука, бутадиен-нитрильного синтетического каучука и бутадиен-α-метилстирольного каучука»).
Недостатком такого наполнителя является незначительное содержание диоксида кремния (1-5%) и потому невысокая усиливающая способность.
Наиболее близким по составу является наполнитель, получаемый из рисовой лузги состава, мас.%: SiO2(85-90)+С(10-15) с примесями оксидов Na2O, K2O, CaO, MgO, Fe2O3, Al2O3 - до 5%. Продукт имеет абсорбцию дибутилфталата 100-110 см3/100 г, что равно саже с высоким уровнем структурности, йодное число равно 54-58 г/кг, что равно техническому углероду со средней степенью дисперсности. Полученные порошки опробованы в качестве наполнителя резины (заменяя белые сажи БС-120, БС-100 и технический углерод П-154). В полученном углеродно-оксидном порошке углерод играет роль модификатора поверхности диоксида кремния, считает автор (см. Ефремова С. В. Научные основы и технология получения новых углерод- и кремнийсодержащих материалов из техногенного сырья. Дис. на соиск. уч. ст.д.т.н., Респ. Казахстан, Шымкент, 2009).
Недостатками данного наполнителя резин являются: 1) большое количество примесей оксидов (до 5%), в том числе Fe2O3 (0,7-0,9%, из которых 0,3-0,4% остаются от лузги, а остальное - это окалина от стенок оборудования), так как процесс ведут в парогазовой смеси в стальной печи при 600-650°С; 2) содержание углерода при данной температуре процесса ограничивается 10-15%; 3) невысокая удельная поверхность; 4) порошок является пылящим; 5) резиновые смеси с данным наполнителем имеют высокое внутренне трение и тепловыделение при многократных деформациях; усиливающие свойства наполнителя недостаточны.
Целью настоящего изобретения является наполнитель резины из рисовой лузги, состоящий из базового порошка SiO2+С + примеси оксидов Fe2O3, Na2O, K2O, СаО, MgO, Al2O3 и плакирующего каучукового покрытия.
Наполнитель имеет состав, мас.%: SiO2(26-98)+С(0,5-66) + примесь Fe2O3(0,2-0,3) + примеси оксидов K2O, Na2O, СаО, MgO, Al2O3 - остальное + сверх 100% каучук (1,2-7,8) + примесь S (0,05-0,23) (в составе SO2, SO3).
При этом базовый порошок представляет собой композиционный природно-гомогенный порошок, состоящий из нанокристаллического диоксида кремния в фазе (5-кристобалита с размером частиц диаметром 6-10, длиной 100-400 нм и углерода в виде аморфного углеподобного вещества, угля или сажеподобного вещества (в зависимости от температуры получения). Удельная поверхность базового порошка составляет 150-290 м2/г. Плакирующим покрытием является каучук с примесью серы (в составе SO2, SO3).
Вторая цель изобретения - устранение пыления порошка наполнителя резины, улучшение санитарных условий работы и снижение потерь.
Третья цель изобретения - улучшение качества резины (повышение предела прочности резины, снижение внутреннего трения и температуровыделения при замесе резины, снижение истираемости) за счет улучшения адгезии наполнителя с каучуковой матрицей посредством плакирования порошка каучуком, улучшения связей SiO2-каучук, С-каучук.
Поставленные цели достигаются тем, что: рисовую лузгу обжигают в печи из жаростойкой стали с постоянным перемешиванием при температуре 380-800°С в течение 20-30 минут; раствор каучука готовят путем экстракции из растений-каучуконосов (из ряда: одуванчик, кок-сагыз, крым-сагыз, тау-сагыз, василек) кипячением в 2-3%-ном водном растворе серной кислоты в течение 30-45 минут; порошок и экстракт смешивают, высушивают при 120-130°С с постоянным перемешиванием; протирают через сито 014. Получают наполнитель резины гранулированный, непылящий.
При этом получаемый наполнитель резины, в зависимости от температуры получения базового порошка, приобретает разные химические составы и физические свойства, и потому объективно разделяется на наполнители трех типов:
а) наполнитель на основе черного базового порошка, получаемого при 380-490°С и содержащий аморфный углеподобный углерод в количестве 66-28 мас.%. Частицы SiO2 в фазе β-кристобалита, сформированные из кремниевой кислоты, находящейся в лузге, равномерно распределены в углеродной матрице и поэтому полученный порошок следует считать композиционным природно-гомогенным материалом;
б) наполнитель на основе серого базового порошка, получаемого при 500-690°С, и содержащий углерод в виде угля (аналог древесного угля, получаемого при 600°С с недостатком воздуха) в количестве 6-27%;
в) наполнитель на основе белого базового порошка, получаемого при 700-800°С, и содержащий углерод аморфный сажеподобный в количестве 0,5-5,0%.
При этом все три типа базового композиционного природно-гомогенного порошка состоят из частиц SiO2, являющихся кристаллами β-кристобалита с размерами 6-10 нм в поперечнике и 100-400 нм длиной, образуя конгломераты размером 0,1-0,5 мкм; в порошках типов «а» и «б» поверхность кристаллов и поровые пространства конгломератов заполнены углеродом, который образуется в виде частиц аморфного вещества, состоящего из неупорядоченных углеродных кластеров графенов с размером частиц 5-20 нм, с фрагментами СН, СН2 (то есть углерод входит в состав несгоревших тяжелых нелетучих углеродистых продуктов и летучих углеродсодержащих веществ, адсорбированных на поверхности нелетучих); порошок типа «в» белого цвета состоит из белых кристаллов β-кристобалита с размерами: диаметр 6-10 нм, длина 100-400 нм и включений черных частиц сажеподобного углерода диаметром 0,1-10 мкм.
Наполнитель типа «а» черного цвета получают на основе базового порошка SiO2(26-66)+С(66-28) + примеси Fe2O3, (0,2-0,3) и оксидов Na2O, K2O, СаО, MgO, Al2O3 - остальное, полученного из рисовой лузги путем обжига при 380-490°С.; углерод - углеподобное вещество.
Наполнитель типа «б» серого цвета получают на основе базового порошка SiO2(68,8-88)+С(6-27) + примеси Fe2O3, (0,25-0,27) и оксидов Na2O, K2O, СаО, MgO, Al2O3 - остальное, полученного из рисовой лузги путем обжига при температуре 500-690°С; углерод в виде угля.
Наполнитель типа «в» белого цвета получают на основе базового порошка SiO2(92-98,4)+С(0,5-3,0) + примеси Fe2O3 (0,28-0,3) и оксидов Na2O, K2O, CaO, MgO, Al2O3 - остальное, полученного из рисовой лузги путем обжига при температуре 700-800°С; углерод в виде сажеподобного вещества.
Каучуксодержащий экстракт получают, например из одуванчика, путем кипячения в 2-3%-ном водном растворе серной кислоты в течение 30-45 минут. В получаемом водно-кислотном экстракте содержится, мас.%: вода - 80, растворенные и взвешенные вещества - 20, в том числе остатки серной кислоты; после просушки в сухом веществе содержится, мас.%: каучук 64-75, сахар 4-6, белок 3-5, смолы 0,5-2, клетчатка 5-6, S 0,4-0,6 (в составе SO2, SO3), оксиды К2О, Na2O, СаО, MgO, Fe2O3, Al2O3 в сумме 0,5-0,6.
При добавлении экстракта в порошок и выпаривании вместе с каучуком на поверхности частиц оседают и указанные выше вещества, а серная кислота воздействует не только на неорганические вещества, но и обугливает углеводороды (сахар, белок) и частично окисляет углерод до CO2, тем самым способствует увеличению удельной поверхности.
Технический результат. При введении 40 мас.ч. полученного наполнителя в бутадиен-метилстирольный каучук марки СКМС-ЗОАРК снижаются модуль внутреннего трения в 2-3 раза, температуровыделение на 6-15°С, истираемость на 9-50%, повышаются предел прочности на растяжение на 10-28%, удлинение на 8-21% по сравнению с резинами, содержащими только технический углерод или механическую смесь порошка диоксида кремния и технического углерода БС-120 50%+П-154 50%, или содержащими порошок SiO2+С, полученного из рисовой лузги, но без плакирования каучуком.
Определение содержания Si, Na, К, Са, Mg, Fe, Al выполняют атомно-абсорбционным методом и по ТУ41-07-014-86 с последующим пересчетом на оксиды. Содержание серы - по ГОСТ 2059-95. Удельную поверхность определяют методом БЭТ.
Примеры выполнения технологических процессов
А. Приготовление базового порошка SiO2+С из рисовой лузги
1. Берут просеянную рисовую лузгу, обжигают при 300°С на воздухе при постоянном перемешивании и равномерном подъеме температуры; выдерживают с перемешиванием при данной температуре 25 минут; размалывают; просеивают через сито 008. Получают черный порошок, содержащий, мас.%: SiO2 15,5, С 80, примеси оксидов 5,5, в том числе примесь Fe2O3 0,4; SiO2 находится в аморфной фазе; углерод является углеподобным аморфным веществом, удельная поверхность полученного порошка 200 м2/г. В продукции содержится много недогоревших частиц лузги. См. табл.1.
2. Просеянную рисовую лузгу обжигают на воздухе при 350°С в течение 25 минут с постоянным перемешиванием. Получают черный порошок, содержащий, мас.%: SiO2 22, С 70, примеси оксидов 5,0, в том числе Fe2O3 0,4; SiO2 находится в фазе β-кристобалита с размерами: диаметр 6, длина 100 нм, образующие конгломераты, которые имеют размер 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного базового порошка 220 м2/г. В порошке содержится много недогоревших частиц лузги.
3. Просеянную рисовую лузгу, обжигают на воздухе при 380°С с постоянным перемешиванием в течение 10 минут. Получают черный порошок, содержащий, мас.%: SiO2 24, С 68, примесей оксидов 5,0, в том числе Fe2O3 0,4. SiO2 находится в фазе β-кристобалита с размерами: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного базового порошка 260 м2/г. В продукции встречаются жесткие недогоревшие частицы лузги.
4. Обжиг лузги ведут при 380°С; выдерживают с перемешиванием 20 мин. Получают черный порошок, содержащий, мас.%: SiO2 26, С 66, примеси оксидов 5,0, в том числе Fe2O3 0,3; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 290 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
5. Обжиг лузги ведут при 380°С; выдерживают с перемешиванием 25 мин. Получают черный порошок, содержащий, мас.%: SiO2 26, С 66, примеси оксидов 5,0, в том числе Fe2O3 0,3; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 290 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
6. Обжиг лузги ведут при 380°С; выдерживают с перемешиванием 30 мин. Получают черный порошок, содержащий, мас.%: SiO2 28, С 64, примеси оксидов 5,0, в том числе Fe2O3 0,3; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 270 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
7. Обжиг лузги ведут при 380°С; выдерживают с перемешиванием 40 мин. Получают черный порошок, содержащий, мас.%: SiO2 28, С 64, примеси оксидов 5,0, в том числе Fe2O3 0,3; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 270 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
8. Обжиг лузги ведут при 400°С; выдерживают с перемешиванием 20 мин. Получают черный порошок, содержащий, мас.%: SiO2 26, С 66, примеси оксидов 4,0, в том числе Fe2O3 0,2; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 280 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
9. Обжиг лузги ведут при 400°С; выдерживают с перемешиванием 30 мин. Получают черный порошок, содержащий, мас.%: SiO2 30, С 62, примеси оксидов 4,0, в том числе Fe2O3 0,2; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 260 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
10. Обжиг лузги ведут при 450°С; выдерживают с перемешиванием 20 минут. Получают черный порошок, содержащий SiO2 37, С 61, примеси оксидов 4,0, в том числе Fe2O3 0,2; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 290 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
11. Обжиг лузги ведут при 450°С; выдерживают с перемешиванием 30 мин. Получают черный порошок, содержащий, мас.%: SiO2 40, С 58, примеси оксидов 4,0, в том числе Fe2O3 0,2; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 220 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
12. Обжиг лузги ведут при 490°С; выдерживают с перемешиванием 10 мин. Получают черный порошок, содержащий, мас.%: SiO2 55, С 39, примеси оксидов 4,0, в том числе Fe2O3 0,2; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 200 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
13. Обжиг лузги ведут при 490°С; выдерживают с перемешиванием 20 минут. Получают черный порошок, содержащий, мас.%: SiO2 61, С 35, примеси оксидов 4,0, в том числе Fe2O3 0,2; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 200 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
14. Обжиг лузги ведут при 490°С; выдерживают с перемешиванием 25 мин. Получают черный порошок, содержащий, мас.%: SiO2 66, С 30, примеси оксидов 4,0, в том числе Fe2O3 0,2; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 190 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
15. Обжиг лузги ведут при 490°С; выдерживают с перемешиванием 30 мин. Получают черный порошок, содержащий, мас.%: SiO2 68, С 28, примеси оксидов 4,0, в том числе Fe2O3 0,2%; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 180 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
16. Обжиг лузги ведут при 490°С; выдерживают с перемешиванием 40 минут. Получают черный порошок, содержащий, мас.%: SiO2 68, С 28, примеси оксидов 4,0, в том числе Fe2O3 0,2; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод является аморфным углеподобным веществом с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 180 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
17. Обжиг лузги ведут при 500°С; выдерживают с перемешиванием 10 минут. Получают темно-серый порошок, содержащий, мас.%: SiO2 68, С 28, примеси оксидов 3,8, в том числе Fe2O3 0,25; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 170 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
18. Обжиг лузги ведут при 500°С; выдерживают с перемешиванием 20 минут. Получают серый порошок, содержащий, мас.%: SiO2 68,8, С 27, примеси оксидов 3,8, в том числе Fe2O3 0,25; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 190 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
19. Обжиг лузги ведут при 500°С; выдерживают с перемешиванием 25 минут. Получают серый порошок, содержащий, мас.%: SiO2 70,2, С 26, примеси оксидов 3,8, в том числе Fe2O3 0,25; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 180 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
20. Обжиг лузги ведут при 500°С; выдерживают с перемешиванием 30 минут. Получают серый порошок, содержащий, мас.%: SiO2 74,0, С 24, примеси оксидов 3,8, в том числе Fe2O3 0,25; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 170 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
21. Обжиг лузги ведут при 500°С; выдерживают с перемешиванием 40 минут. Получают серый порошок, содержащий, мас.%: SiO2 74,0, С 24, примеси оксидов 3,8, в том числе Fe2O3 0,25; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 170 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
22. Обжиг лузги ведут при 600°С; выдерживают с перемешиванием 20 минут. Получают серый порошок, содержащий, мас.%: SiO2 86,3, С 14, примеси оксидов 3,7, в том числе Fe2O3 0,27; SiO2 находится в фазе β-кристобалита с размерами кристаллов; диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 190 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
23. Обжиг лузги ведут при 600°С; выдерживают с перемешиванием 30 минут. Получают серый порошок, содержащий, мас.%: SiO2 84,3, С 10, примеси оксидов 3,7, в том числе Fe2O3 0,27; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 170 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
24. Обжиг лузги ведут при 690°С; выдерживают с перемешиванием 10 минут. Получают серый порошок, содержащий, мас.%: SiO2 81,4, С 9, примеси оксидов 3,6, в том числе Fe2O3 0,27; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 180 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
25. Обжиг лузги ведут при 690°С; выдерживают с перемешиванием 20 минут. Получают серый порошок, содержащий, мас.%: SiO2 88, С 8, примеси оксидов 3,6, в том числе Fe2O3 0,27; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 170 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
26. Обжиг лузги ведут при 690°С; выдерживают с перемешиванием 30 минут. Получают серый порошок, содержащий, мас.%: SiO2 89,4, С 6, примеси оксидов 3,6, в том числе Fe2O3 0,27; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 180 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
27. Обжиг лузги ведут при 690°С; выдерживают с перемешиванием 40 минут. Получают светло-серый порошок, содержащий, мас.%: SiO2 89,4, С 6, примеси оксидов 3,6, в том числе Fe2O3 0,27; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод содержится в угле и является аморфным с размером частиц 5-10 нм, удельная поверхность полученного композиционного порошка 180 м2/г. Базовый порошок состоит из равномерно обгоревших частиц лузги.
28. Обжиг лузги ведут при 700°С; выдерживают с перемешиванием 10 минут. Получают серовато-белый порошок, содержащий, мас.%: SiO2 91,4, С 5,5, примеси оксидов 3,6, в том числе Fe2O3 0,28; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод находится в сажеподобном аморфном состоянии с размером частиц 5-10 нм. Удельная поверхность полученного базового порошка 160 м2/г; порошок состоит в основном из белых частиц SiO2 с примесью частиц сажеподобного углерода.
29. Обжиг лузги ведут при 700°С; выдерживают с перемешиванием 20 минут. Получают белый порошок, содержащий, мас. %: SiO2 91,5, С 5,0, примеси оксидов 3,6, в том числе Fe2O3 0,28; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод находится в сажеподобном аморфном состоянии с размером частиц 5-10 нм. Удельная поверхность полученного базового порошка 160 м2/г; порошок состоит в основном из белых частиц SiO2 с примесью черных частиц сажеподобного углерода.
30. Обжиг лузги ведут при 700°С; выдерживают с перемешиванием 30 минут. Получают белый порошок, содержащий, мас.%: SiO2 92,0, С 3,0, примеси оксидов 3,6, в том числе Fe2O3 0,28; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод находится в сажеподобном аморфным состоянии с размером частиц 5-10 нм. Удельная поверхность полученного базового порошка 170 м2/г; порошок состоит в основном из белого диоксида кремния с включениями черных частиц сажеподобного углерода.
31. Обжиг лузги ведут при 700°С; выдерживают с перемешиванием 40 минут. Получают белый порошок, содержащий, мас.%: SiO2 93,0, С 3,0, примеси оксидов 3,6, в том числе Fe2O3 0,28; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод находится в сажеподобном аморфным состоянии с размером частиц 5-10 нм. Удельная поверхность полученного базового порошка 170 м2/г; порошок состоит в основном из белого диоксида кремния с включениями черных частиц сажеподобного углерода.
32. Обжиг лузги ведут при 800°С; выдерживают с перемешиванием 10 минут. Получают белый порошок, содержащий, мас.%: SiO2 95,0, С 1,0, примеси оксидов 3,5, в том числе Fe2O3 0,3; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод находится в виде сажеподобного аморфного вещества с размером частиц 5-10 нм. Удельная поверхность полученного базового порошка 160 м2/г; порошок состоит практически из белого SiO2 с включениями черных частиц сажеподобного углерода.
33. Обжиг лузги ведут при 800°С; выдерживают с перемешиванием 20 минут. Получают белый порошок, содержащий, мас.%: SiO2 96,0, С 0,8, примеси оксидов 3,5, в том числе Fe2O3 0,3; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод находится в виде сажеподобного аморфного вещества с размером частиц 5-10 нм. Удельная поверхность полученного базового порошка 160 м2/г; порошок состоит практически из белого SiO2 с включениями черных частиц сажеподобного углерода.
34. Обжиг лузги ведут при 800°С; выдерживают с перемешиванием 30 минут. Получают белый порошок, содержащий, мас.%: SiO2 98,0, С 0,5, примеси оксидов 3,5, в том числе Fe2O3 0,3; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод находится в виде сажеподобного аморфного вещества с размером частиц 5-10 нм. Удельная поверхность полученного базового порошка 150 м2/г; порошок состоит практически из белого SiO2 с включениями черных частиц сажеподобного углерода.
35. Обжиг лузги ведут при 800°С; выдерживают с перемешиванием 40 минут. Получают белый порошок, содержащий, мас.%: SiO2 98,0, С 0,5, примеси оксидов 3,5, в том числе Fe2O3 0,3; SiO2 находится в фазе β-кристобалита с размерами кристаллов: диаметр 6, длина 100 нм, образующие конгломераты с размером 0,1-0,5 мкм; углерод находится в виде сажеподобного аморфного вещества с размером частиц 5-10 нм. Удельная поверхность полученного базового порошка 150 м2/г; порошок состоит практически из белого SiO2 с включениями черных частиц сажеподобного углерода.
Согласно полученным результатам, ориентируясь на высокую удельную поверхность и высокое содержание диоксида кремния, приемлемыми режимами получения черного порошка типа «а» следует считать опыты №№4-15 - температура обжига 380-490°С, выдержка при заданной температуре 20-30 минут. Получают порошок состава, мас.%: SiO2(26-66)+С(30-66)+Fe2O3(0,2-0,3) + оксиды СаО, Na2O, K2O, MgO, Al2O3 - остальное; удельная поверхность 190-290 м2/г.
опыта
опыта
Поверх
ность, м2/г
Оптимальными режимами получения серого порошка типа «б» следует считать опыты №№18-26 - температура 500-690°С, выдержка 20-30 минут; получают порошок состава, мас.%: SiO2(68,8-88,0)+C(6-27)+Fe2O3(0,25-0,2) + оксиды CaO, Na2O, K2O, MqO, Al2O3 - остальное; удельная поверхность 180-190 м2/г.
Оптимальными режимами получения белого порошка типа «в» следует считать №30-33 - температура 700-800°С, выдержка 20-30 мин.; получают порошок состава, мас.%: SiO2(92-98)+С(0,5-3,0)+Fe2O3(0,28-0,3) + оксиды CaO, Na2O, K2O, MqO, Al2O3 - остальное; удельная поверхность 150-170 м2/г.
Б. Опыты по получению каучуксодержащего экстракта
1. Берут, например, сырые корни одуванчика (или кок-сагыза, василька, крым-сагыза, тау-сагыза), вливают однопроцентный водный раствор серной кислоты в соотношении жидкость: твердое = 5:1, кипятят в течение 10 минут. Получают экстракт, содержащий каучук в количестве 5 мас.%, см. табл. 2. Если берут сухие корни, то соотношение жидкость: твердое = 7:1.
2. Опыт ведут, как в п.1, но кипятят в течение 20 минут. Получают экстракт с 8% каучука.
3. Опыт ведут, как в п.1, но кипятят в течение 30 минут. Получают экстракт с 10% каучука.
4. Опыт ведут, как в п.1, но кипятят в течение 45 минут. Получают экстракт с 12% каучука.
5. Опыт ведут, как в п.1, но кипятят в течение 60 минут. Получают экстракт с 14% каучука.
6. Опыт ведут, как в п.1, но концентрация серной кислоты составляет 2% и кипятят в течение 10 минут. Получают экстракт с 8% каучука.
7. Опыт ведут, как в п.6, но кипятят в течение 20 минут. Получают экстракт с 11% каучука.
8. Опыт ведут, как в п.6, но кипятят в течение 30 минут. Получают экстракт с 13% каучука.
9. Опыт ведут, как в п.6, но кипятят в течение 45 минут. Получают экстракт с 15% каучука.
10. Опыт ведут, как в п.6, но кипятят в течение 60 минут. Получают экстракт с 15% каучука.
11. Опыт ведут, как в п.1, но концентрация серной кислоты составляет 3% и кипятят в течение 10 минут. Получают экстракт с 10% каучука.
12. Опыт ведут, как в п.11, но кипятят в течение 20 минут. Получают экстракт с 12% каучука.
13. Опыт ведут, как в п.11, но кипятят в течение 30 минут. Получают экстракт с 14% каучука.
14. Опыт ведут, как в п.11, но кипятят в течение 45 минут. Получают экстракт с 15% каучука.
15. Опыт ведут, как в п.11, но кипятят в течение 60 минут. Получают экстракт с 15% каучука.
16. Опыт ведут, как в п.1, но концентрация серной кислоты составляет 5% и кипятят в течение 10 минут. Получают экстракт с 12% каучука.
17. Опыт ведут, как в п.16, но кипятят в течение 20 минут. Получают экстракт с 14% каучука.
18. Опыт ведут, как в п.16, но кипятят в течение 30 минут. Получают экстракт с 15% каучука.
19. Опыт ведут, как в п.16, но кипятят в течение 45 минут. Получают экстракт с 15% каучука.
20. Опыт ведут, как в п.16, но кипятят в течение 60 минут. Получают экстракт с 15% каучука.
Из представленных результатов следует, что оптимальными режимами приготовления экстракта являются опыты №9, 13, 14 - концентрация кислоты 2-3%, продолжительность кипячения 30-45 минут; получают экстракт с 14-15% каучука. В дальнейших опытах применяют экстракт с 15% каучука.
опыта
В. Приготовление наполнителя (композиционного природно-гомогенного непылящего порошка SiO2+С + каучук).
В нижеследующих четырех опытах используют базовый порошок типа «а» состава, мас.%: SiO2 26 + С 66; удельная поверхность 290 м2/г (опыт №4, табл.1).
1. Берут указанный базовый порошок, приливают экстракт с 15% каучука в количестве 50 г на 100 г порошка, высушивают на воздухе при 120-130°С при постоянном перемешивании, протирают через сито 014. На порошок равномерно осаждаются каучук и сера (в составе SO2, SO3), связывая все частицы углерода и SiO2; поэтому плакированный порошок не пылит. Получают природно-гомогенную порошковую композицию состава, мас.%: SiO2 - 26; С - 6; примеси Fe2O3 - 0,4; примеси оксидов CaO, Na2O, K2O, MqO, Al2O3 - остальное и сверх 100% каучук - 1,4, S - 0,04. См. табл.3.
2. Подготовку и проведение опыта выполняют, как в п.1, а экстракт приливают в количестве 100 г на 100 г порошка. Получают композиционный непылящий порошок с содержанием, мас.%: SiO2 26, С 66, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 3,0, S - 0,085. См. табл.3.
3. Подготовку и проведение опыта выполняют как в п.1, а экстракт приливают в количестве 150 г на 100 г порошка. Получают композиционный непылящий порошок с содержанием, мас.%: SiO2 26, С 66, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 5,4, сера - 0,12.
4. Подготовку опыта и процесс ведут, как в п.1, а экстракт приливают в количестве 200 г на 100 г порошка. Получают композиционный непылящий порошок с содержанием, мас.%: SiO2 26, С 66, примеси указанных выше оксидов в том же количестве и сверх 100% каучук 6,8 и сера 0,16.
В нижеследующих четырех опытах используют базовый порошок типа «а» состава, мас.%: SiO2 37, С 61, примеси Fe2O3 0,2, оксиды СаО, Na2O, К2О, MqO, Al2O3 - остальное; удельная поверхность 290 м2/г.
5. Берут указанный базовый порошок, приливают экстракт с содержанием каучука 15% в количестве 50 г на 100 г порошка, высушивают на воздухе при 120-130°С при постоянном перемешивании, протирают через сито 014. Получают композиционный непылящий порошок состава, мас.%: SiO2 37, С 61, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 2, сера - 0,055.
6. Подготовку опыта и процесс выполняют, как в п.5, а экстракт приливают в количестве 100 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 37, С 61, примеси оксиды указанных выше оксидов в том же количестве и сверх 100% каучук - 4, сера - 0,11.
7. Подготовку опыта и процесс ведут, как в п.5, а экстракт приливают в количестве 150 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 - 37, С - 61, примеси оксиды указанных выше оксидов в том же количестве и сверх 100% каучук - 6, сера - 0,16.
8. Подготовку опыта и процесс ведут как в п.5, а экстракт приливают в количестве 200 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 37, С 61, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 8, сера - 0,2.
В нижеследующих четырех опытах используют базовый порошок типа «а» состава, мас.%: SiO2 61, С 35, примеси: Fe2O3 0,2, оксиды СаО, Na2O, K2O, MgO, Al2O3 - остальное; удельная поверхность 200 м2/г.
9. Берут указанный базовый порошок, приливают экстракт, содержащий 15% каучука в количестве 50 г на 100 г порошка, высушивают на воздухе при 120-130°С при постоянном перемешивании, протирают через сито 014. Получают композиционный непылящий порошок состава, мас.%: SiO2 61, С 35, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 2, сера - 0,06.
10. Подготовку и проведение опыта выполняют, как в п.9, а экстракт приливают в количестве 100 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 61, С 35, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 4, сера - 0,12.
11. Подготовку опыта и процесс ведут, как в п.9, а экстракт приливают в количестве 150 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 61, С 35, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 5,8, сера - 0,16.
12. Подготовку опыта и процесс ведут, как в п.9, а экстракт приливают в количестве 200 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 61, С 35, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 7,0, сера - 0,2.
В нижеследующих четырех опытах используют базовый порошок типа «б» состава, мас.%: SiO2 74, С 24, примеси: Fe2O3 0,25, оксиды СаО, Na2O, К2О, MgO, Al2O3 - остальное; удельная поверхность 170 м2/г.
13. Берут указанный базовый порошок, приливают экстракт, содержащий 15% каучука в количестве 50 г на 100 г порошка, высушивают на воздухе при 120-130°С при постоянном перемешивании, протирают через сито 014. Получают композиционный непылящий порошок состава, мас.%: SiO2 74, С 24, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 1,5, сера - 0,06.
14. Подготовку и выполнение опыта выполняют, как в п.13, а экстракт приливают в количестве 100 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 74, С 24, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 2,0 сера - 0,08.
15. Подготовку опыта и процесс ведут, как в п.13, а экстракт приливают в количестве 150 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 74, С 24, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 3,0, сера - 0,13.
16. Подготовку опыта и процесс ведут, как в п.13, а экстракт приливают в количестве 200 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 74, С 24, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 3,0, сера - 0,13.
В нижеследующих четырех опытах используют базовый порошок типа «б» состава, мас.%: SiO2 84,3, С 10, примеси: Fe2O3 - 0,27, оксиды CaO, Na2O, K2O, MgO, Al2O3 - остальное; удельная поверхность 170 м2/г.
17. Берут указанный базовый порошок, приливают экстракт, содержащий 15% каучука в количестве 50 г на 100 г порошка, высушивают на воздухе при 120-130°С при постоянном перемешивании, протирают через сито 014. Получают композиционный непылящий порошок состава, мас.%: SiO2 84,3, С 10, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 1,5, сера - 0,08.
18. Подготовку опыта и процесс ведут, как в п.17, а экстракт приливают в количестве 100 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 84,3, С 10, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 2,0, сера - 0,12.
19. Подготовку опыта и процесс ведут, как в п.17, а экстракт приливают в количестве 150 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 84,3, С 10, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 3,0, сера - 0,16.
20. Подготовку опыта и процесс ведут, как в п.17, а экстракт приливают в количестве 200 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 84,3, С 10, примеси указанных выше оксидов в том же количестве и сверх 100% каучук - 4,0, сера - 0,24.
В нижеследующих четырех опытах используют базовый порошок типа «б» состава, мас.%: SiO2 89,4, С 6, примесь Fe2O3 0,27, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное; удельная поверхность 180 м2/г.
21. Берут указанный базовый порошок, приливают экстракт, содержащий 15% каучука в количестве 50 г на 100 г порошка, высушивают на воздухе при 120-130°С при постоянном перемешивании, протирают через сито 014. Получают композиционный непылящий порошок состава, мас.%: SiO2 89,4, С 6, примесь Fe2O3 0,27, примеси оксидов CaO, Na2O, К2О, MgO, Al2O3 - остальное и сверх 100% каучук - 1,3, сера - 0,06.
22. Подготовку опыта и процесс ведут, как в п.21, а экстракт приливают в количестве 100 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 89,4, С 6, примесь Fe2O3 - 0,27, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное и сверх 100% каучук - 2,6, сера - 0,12.
23. Подготовку опыта и процесс ведут, как в п.21, а экстракт приливают в количестве 150 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 89,4, С 6, примесь Fe2O3 - 0,27, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное и сверх 100% каучук - 2,6, сера - 0,12.
24. Подготовку опыта и процесс ведут, как в п.21, а экстракт приливают в количестве 200 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 89,4, С 6, примесь Fe2O3 - 0,27, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3- остальное и сверх 100% каучук - 5,1, сера - 0,22.
В нижеследующих четырех опытах используют базовый порошок типа «в» состава, мас.%: SiO2 92, С 3, примесь Fe2O3 0,28, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное; удельная поверхность 170 м2/г.
25. Берут указанный базовый порошок, приливают экстракт, содержащий 15% каучука в количестве 50 г на 100 г порошка, высушивают на воздухе при 120-130°С при постоянном перемешивании, протирают через сито 014. Получают композиционный непылящий порошок состава, мас.%: SiO2 92, С 3, примесь Fe2O3 0,28, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное и сверх 100% каучук 0,9, сера - 0,04.
26. Подготовку опыта и процесс ведут, как в п.25, а экстракт приливают в количестве 100 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 92, С 3, примесь Fe2O3 - 0,28, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное и сверх 100% каучук - 1,8, сера - 0,08.
27. Подготовку опыта и процесс ведут, как в п.25, а экстракт приливают в количестве 150 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 92, С 3, примесь Fe2O3 - 0,28, примеси оксидов CaO, Na2O, К2О, MgO, Al2O3 - остальное и сверх 100% каучук - 2,5, сера - 0,12.
28. Подготовку опыта и процесс ведут, как в п.25, а экстракт приливают в количестве 200 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 92, С 3, примесь Fe2O3 - 0,28, примеси оксидов CaO, Na2O, К2О, MgO, Al2O3 - остальное и сверх 100% каучук - 3,5, сера - 0,15.
В нижеследующих четырех опытах используют базовый порошок типа «в» состава, мас.%: SiO2 98, С 0,5, примесь Fe2O3 0,3, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное; удельная поверхность 150 м2/г.
29. Берут указанный базовый порошок, приливают экстракт, содержащий 15% каучука в количестве 50 г на 100 г порошка, высушивают на воздухе при 120-130°С при постоянном перемешивании, протирают через сито 14. Получают композиционный непылящий порошок состава, мас.%: SiO2 98, С 0,5, примесь Fe2O3 0,3, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное и сверх 100% каучук - 0,7, сера - 0,03.
30. Подготовку опыта и процесс ведут, как в п.29, а экстракт приливают в количестве 100 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 98, С 0,5, примесь Fe2O3 0,3, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное и сверх 100% каучук - 1,2, сера - 0,07.
31. Подготовку опыта и процесс ведут, как в п.29, а экстракт приливают в количестве 150 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 - 98, С - 0,5, примесь Fe2O3 - 0,3, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное и сверх 100% каучук - 1,8, сера - 0,07.
32. Подготовку опыта и процесс ведут, как в п.29, а экстракт приливают в количестве 200 г на 100 г порошка. Получают композиционный непылящий порошок состава, мас.%: SiO2 98, С 0,5, примесь Fe2O3 0,3, примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное и сверх 100% каучук - 2,1, сера - 0,09.
Из представленных результатов следует, что каучук осаждается в большей степени на порошках, имеющих большее количество углерода и удельной поверхности базового порошка; такая же зависимость наблюдается и с осаждением примеси серы (в составе SO2, SO3); дополнительного увеличения примеси Fe2O3 и оксидов CaO, Na2O, K2O, MgO, Al2O3 не наблюдается (см. табл.3).
Г. Получение резин
Резиновые смеси готовят на основе каучука СКМС-ЗОАРК: базовый состав резиновой смеси, мас.ч.: каучук - 100, стеарин - 2, ZnO - 5, S-2 (далее обозначается БС - базовая смесь).
В первой контрольной группе резиновых смесей (оп.1-3, табл.4) добавляют стандартные наполнители в количестве 40 мас.ч.: технический углерод марки П-154; диоксид кремния марки БС-120; механическую смесь, указанных выше наполнителей П-154 50%+БС-120 50%.
Во второй контрольной группе смесей (опыты 4-11, табл.4) добавляют природно-гомогенный порошок из рисовой лузги без покрытия каучуком (условное обозначение ПРЛ) следующих составов, мас.%:
с порошками типа «a»: SiO2 26+C 66, условное обозначение (ПРЛ-26-66); SiO2 37+C 61 - (ПРЛ-37-61); SiO2 61+С 35 - (ПРЛ-61-35);
с порошками типа «б»: SiO2 74+С 24-(ПРЛ-74-24); SiO2 84,3+С 10-(ПРЛ-84-10); SiO2 89,4+С6 - (ПРЛ-89-6);
с порошками типа «в»: SiO2 92+С 3 - (ПРЛ-92-3); SiO298+С0,5 - (ПРЛ-98-0,5).
В третьей группе смесей (опыты 12-35) добавляют новый, патентуемый порошок ПРЛ с добавками каучука, мас.%:
с порошком типа «а»: SiO2 26+С 66 + каучук 1,4, условное обозначение (ПРЛ-26-66-1,4); SiO2 26+С 66 + каучук 3, условное обозначение (ПРЛ-26-66-3); SiO2 26+С 66 + каучук 6,8, условное обозначение (ПРЛ-26-66-6,8);
с порошком типа «а»: SiO2 37+С 61 + каучук 2 - (ПРЛ-37-61-2);, SiO2 37+С61 + каучук 4 - (ПРЛ-37-61-4); SiO2 37+С 61 + каучук 8 - (ПРЛ-37-61-8);
с порошком типа «а»: SiO2 61+С35 + каучук 2 - (ПРЛ-61-35-2); SiO2 61+С35 + каучук 4 - (ПРЛ-61-35-4); SiO2 61+С35 + каучук 7 -(ПРЛ-61-35-7).
с порошком типа «б»: SiO2 74+С24 + каучук 1,5 - (ПРЛ-74-24-1,5); SiO2 74+С24 + каучук 3 - (ПРЛ-74-24-3); SiO2 74 + С24 + каучук 4 -(ПРЛ-74-24-4);
с порошком типа «б»: SiO2 84+С10 + каучук 1,5 - (ПРЛ-84-10-1,5); SiO2 84+С10 + каучук 3 - (ПРЛ-84-10-3); SiO2 84+С10 + каучук 4 - (ПРЛ-84-10-4);
с порошком типа «б»: SiO2 89,4+С6 + каучук 1,3 - (ПРЛ-89-6-1,3); SiO2 89,4+С6 + каучук 2,6 - (ПРЛ-89-6-2,6); SiO2 89,4+С6 + каучук 5,1- (ПРЛ-89-6-5,1);
с порошком типа «в»: SiO2 92+С3 + каучук 0,9 - (ПРЛ-92-3-0,9); SiO2 92+С3 + каучук 1,8 - (ПРЛ-92-3-1,8); SiO2 92+С3 + каучук 3,5 - (ПРЛ-92-3-3,5);
с порошком типа «в»: SiO2 98+С0,5 + каучук 0,7 - (ПРЛ-98-0,5-0,7); SiO2 98+С0.5 + каучук 1,2 - (ПРЛ-98-0,5-1,2); SiO2 98+С0.5 + каучук 2,1 - (ПРЛ-98-0,5-2,1);
Все наполнители вводят в количестве 40 мас.ч.
Резиновые смеси готовят на лабораторном смесителе ВН-4003А с объемом загрузки 1500 см3 при скорости вращения ротора 60 об/мин и продолжительности смешивания 10 минут; температура валков 50°С. Данный режим выдерживали для всех смесей, чтобы уровень деформации сдвига резиновой смеси был во всех случаях одинаковым; после замешивания определяли температуру смеси и по ней оценивали температуровыделение. Определение предела прочности и относительного удлинения при разрыве определяли по ГОСТ 270-75; определение истираемости - по ГОСТ 426-77 на установке МИ-2 при давлении 26 Н по шкурке П8Г44А8НМ; модуль внутреннего трения - по ГОСТ 10828-75. Результаты испытаний представлены в таблице 4.
Из анализа результатов следует, что введение каучука в патентуемые базовые порошки положительно влияет на все характеристики резин в сравнении с резинами, в которых аналогичные наполнители были без каучука.
А. Модуль внутреннего трения. 1) патентуемый наполнитель снижает модуль внутреннего трения в резинах (опыты №№12-26) по сравнению с резинами в которых использовались стандартные наполнители П-154, БС-120 (опыты №1, 2) с 4,1-4,8 до 1,6 МПа; 2) модуль снижается в резинах с патентуемым наполнителем (опыты №12-35) по сравнению с контрольным наполнителем (базовый порошок без покрытия каучуком, опыты №4-11) на 10-50%; 3) с увеличением содержания SiO2 в патентуемом наполнителе модуль внутреннего трения возрастает.
Б. Температуровыделение. 1) в резинах с патентуемым наполнителем температуровыделение при замесе резин снижается во всех смесях, например, в составе БС-ПРЛ-61-35 (опыт №6), с 74 до 58°С в составе БС-ПРЛ-61-35-7; в других составах снижение наблюдается на 6-13°С; 2) с увеличением содержания SiO2 в патентуемом наполнителе температуровыделение возрастает, но не превышает уровень контрольных наполнителей.
№
В. Предел прочности при растяжении. 1) в резинах с патентуемым наполнителем наблюдается повышение предела прочности, например, в составе БС-ПРЛ-26-66, с 15,0 до 18,0 МПа в составе БС-ПРЛ-26-66-6,8; в других составах увеличение происходит на 10-28%; 2) наибольший прирост прочности наблюдается в резинах, в которых наполнитель имел наибольшее количество каучукового покрытия (например, опыты №№12-14, 15-17, 27-29).
Г. Удлинение. 1) в резинах с патентуемым наполнителем наблюдается увеличение удлинения по сравнению с контрольными наполнителями, например, в составе БС-ПРЛ-61-35, с 580 до 650% в составе БС-ПРЛ-61-35-7; в других составах увеличение наблюдается на 8-21%; 2) удлинение снижается с уменьшением количества углерода в наполнителе (опыты №№33-35).
Д. Истираемость. В резинах с патентуемым наполнителем наблюдается уменьшение истираемости практически во всех составах резин, например в составе БС-ПРЛ-37-61, с 12 до 5 м3/ТДж в составе БС-ПРЛ-37-61-4; в других составах снижение наблюдается на 9-50%.
При использовании наполнителя типа «а» резины получаются черного цвета, при использовании наполнителя типа «б» - темно-серого цвета, при использовании наполнителя типа «в» - светло-серого цвета.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАПОЛНИТЕЛЯ РЕЗИНЫ | 2012 |
|
RU2531180C2 |
СПОСОБ ПЕРЕРАБОТКИ РИСОВОЙ ШЕЛУХИ И ПОЛУЧЕНИЕ ПОРОШКА НАНОКРИСТАЛЛИЧЕСКОГО β-КРИСТОБАЛИТА | 2010 |
|
RU2440294C2 |
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ МЕТАЛЛАМИ НАПОЛНИТЕЛЕЙ ДЛЯ РЕЗИН | 2015 |
|
RU2602129C1 |
Способ и шихта для получения композиционного порошка на основе боридов железа и титана | 1988 |
|
SU1630869A1 |
ПЕЧЬ ВЕРТИКАЛЬНАЯ КИПЯЩЕГО СЛОЯ | 2011 |
|
RU2551330C2 |
Способ получения порошка магнетита | 2023 |
|
RU2817877C1 |
СПОСОБ ПЕРЕРАБОТКИ РИСОВОЙ ШЕЛУХИ | 2010 |
|
RU2436730C1 |
ТЕХНОЛОГИЧЕСКАЯ ДОБАВКА ДЛЯ РЕЗИНОВЫХ СМЕСЕЙ | 2008 |
|
RU2396293C2 |
Электропроводный композиционный материал на керамической основе | 2021 |
|
RU2787509C1 |
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО АМОРФНОГО ИЛИ НАНОКРИСТАЛЛИЧЕСКОГО ДИОКСИДА КРЕМНИЯ | 2001 |
|
RU2191159C1 |
Изобретение относится к химической промышленности, в частности к производству наполнителей для резиновых смесей при получении резин. Наполнитель резины включает базовый порошок диоксида кремния, углерода, примеси оксидов СаО, К2О, Na2O, MgO, Al2O3 и плакирующего покрытия каучука. Наполнитель имеет состав, мас.%: SiO2(26-98)+С(0,5-66) + примесь Fe2O3(0,2-0,3) + примеси оксидов СаО, К2О, Na2O, MgO, Al2O3 - остальное + сверх 100% каучук (1,2-7,8) и примесь S (0,05-0,23) (в составе SO2, SO3). Базовый порошок получают путем обжига рисовой лузги, он имеет удельную поверхность 150-290 м2/г; диоксид кремния в порошке имеет кристаллическую форму β-кристобалита с размерами кристаллов: диаметр 6-10, длина 100-400 нм; углерод находится в виде углеподобного вещества, угля или сажеподобного вещества в зависимости от температуры обжига. Каучук для плакирования получают осаждением из водно-кислотного экстракта каучуконосов ряда: одуванчик, кок-сагыз, крым-сагыз, тау-сагыз, василек. Наполнитель является природно-гомогенным, непылящим. Резины, полученные с использованием наполнителя, имеют повышенную прочность, пониженный модуль внутреннего трения, пониженные истираемость и температуровыделение при замесе резины. 3 з.п. ф-лы,4 табл.
1. Наполнитель резины, включающий базовый порошок SiO2+C+ примеси оксидов Fe2O3, CaO, Na2O, K2O, MgO, Al2O3, полученный из рисовой лузги обжигом, и плакирующее покрытие из каучука с примесью серы (в составе SO2, SO3), имеющий состав, мас.%: SiO2 (26-98)+C (0,5-66) + примесь Fe2O3 (0,2-0,3) + примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное, плюс сверх 100% каучук (1,2-7,8)+S(0,05-0,23); базовый порошок имеет удельную поверхность 150-290 м2/г; диоксид кремния имеет кристаллическую форму β-кристобалита с размерами кристаллов диаметром 6-10, длиной 100-400 нм, углерод аморфный в виде углеподобного вещества, угля, или сажеподобного вещества; при этом каучук получен из каучуконосов ряда: одуванчик, василек, кок-сагыз, крым-сагыз, тау-сагыз и введен в базовый порошок из водно-кислотного экстракта, содержащего 12-15 мас.% каучука.
2. Наполнитель резины по п.1, отличающийся тем, что базовый порошок SiO2+C+ примеси оксидов получают из рисовой лузги обжигом при 380-490°C и наполнитель содержит углерод в количестве 28-66% в виде аморфного углеподобного вещества.
3. Наполнитель резины по п.1, отличающийся тем, что базовый порошок SiO2+C+ примеси оксидов получают из рисовой лузги обжигом при 500-690°C и наполнитель содержит углерод в количестве 6-27% в виде угля.
4. Наполнитель резины по п.1, отличающийся тем, что базовый порошок SiO2+C+ примеси оксидов получают из рисовой лузги обжигом при 700-800°C и наполнитель содержит углерод в количестве 0,5-3,0% в виде аморфного сажеподобного вещества.
СПОСОБ ПОЛУЧЕНИЯ АМОРФНОГО ДИОКСИДА КРЕМНИЯ ИЗ РИСОВОЙ ШЕЛУХИ | 1994 |
|
RU2061656C1 |
СПОСОБ ПОЛУЧЕНИЯ АМОРФНОГО ДИОКСИДА КРЕМНИЯ | 2009 |
|
RU2402485C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА КРЕМНИЯ ИЗ ОТХОДОВ ПРОИЗВОДСТВА РИСА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2233795C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА КРЕМНИЯ | 2009 |
|
RU2394764C1 |
СПОСОБ ПОДГОТОВКИ РИСОВОЙ ШЕЛУХИ ДЛЯ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО ДИОКСИДА КРЕМНИЯ | 2001 |
|
RU2191158C1 |
US 20100229465 A1,16.09.2010 | |||
ОБРАБОТКА И ОТОБРАЖЕНИЕ ИЗОБРАЖЕНИЯ ГРУДНОЙ ЖЕЛЕЗЫ | 2012 |
|
RU2640000C2 |
Авторы
Даты
2014-10-10—Публикация
2011-09-22—Подача