СПОСОБ ПЛАЗМЕННОГО АЗОТИРОВАНИЯ ДЕТАЛЕЙ Российский патент 2014 года по МПК C23C8/24 C23C14/48 

Описание патента на изобретение RU2530192C1

Изобретение относится к области поверхностного упрочнения путем азотирования деталей и может быть использовано при изготовлении широкой номенклатуры деталей и инструмента, к которым предъявляются требования повышенного сопротивления схватыванию и адгезии в парах трения и коррозионной стойкости в условиях влажного воздуха. Из машиностроительной отрасли в таких условиях работает большинство деталей почвообрабатывающей, землеройной, кормоуборочной техники, а также пары трения ходовой части автотранспорта.

Известен способ плазменного азотирования (см. РЖ "Металловедение и термическая обработка", №3,1214. Обзор. Применение технологии плазменного азотирования. Application technology of plasma nitriding. Kanetake Norio. "Int. Semin. Plasma Heat Treat. Sel. and Technol. Senlis, 21-23 Sept., 1987". Paris, 1987, 145-153).

В известном способе плазменного азотирования сталей деталь помещается в газовую среду с определенным соотношением газовых компонентов. Такая обработка интенсифицирует насыщение поверхности детали азотом, но сопряжена с необходимостью применения насыщающей среды и смешивающего устройства, обеспечивающего ее состав в строгой пропорции газов H2/N2, что увеличивает эксплуатационные издержки.

Наиболее близким по технической сущности к заявляемому изобретению является способ плазменного азотирования деталей (Патент RU2240375 «Способ плазменного азотирования деталей» опубликован: 20.11.2004 - прототип), при котором упрочняемую деталь перемещают в зоне плазменной дуги относительно плазмотрона и используют в качестве плазмообразующего газа сжатый воздух, в качестве насыщающей среды используют азот плазмообразующего воздуха, и упрочняемую деталь перемещают относительно плазмотрона со скоростью, достаточной для оплавления поверхностного слоя, способного сохраниться без растекания за счет сил поверхностного натяжения.

В способе-прототипе интенсивное диффузионное насыщение элементами азота протекает в пределах оплавленного поверхностного слоя нагреваемого материала - для технического железа и углеродистых сталей глубина оплавленного слоя, который удается сохранить при нагреве без растекания за счет поверхностного натяжения - 0,15 мм, следовательно, на такую глубину производится упрочнение за счет азотирования из столба воздушно-плазменной дуги.

Однако оплавление поверхностного слоя обрабатываемой детали приводит к необходимости последующей механической обработки, что значительно уменьшает толщину азотированного слоя.

Технический результат предлагаемого изобретения - получение поверхностного слоя легированного азотом, обеспечивающего повышенную износостойкость, усталостную прочность и сопротивление коррозии в условиях абразивного изнашивания с минимальным уровнем деформаций и короблений деталей.

Технический результат достигается тем, что в способе плазменного азотирования деталей, при котором обрабатываемую деталь перемещают относительно плазмотрона, согласно изобретению, перемещение детали происходит в зоне плазменной струи, формирующейся в преобразователе потока плазмотрона с щелевым выходным отверстием, в качестве плазмообразующего газа используют азот, выполняющий также роль легирующего элемента.

Кроме того, при толщине обрабатываемой детали меньше 25 мм, она дополнительно подвергается спрейерному охлаждению, синхронному с плазменной обработкой, и погружается в охлаждающую ее воду на 1/3 толщины для снижения коробления.

На фиг.1 изображена схема экспериментальной установки для реализации предлагаемого способа. На фиг.2 приведена фотография поперечного микрошлифа образца стали 60Г (после диффузионного насыщения азотом (×1000)).

Способ плазменного азотирования деталей осуществляется следующим образом (фиг.1). Обрабатываемая деталь 1 перемещается относительно плазмотрона 2 в зоне плазменной струи, формирующейся в преобразователе потока плазмотрона 3 с щелевым выходным отверстием 4. Одним из известных способов возбуждается дуга между электродами плазмотрона 2, подается плазмообразующий газ - азот. Обработка детали происходит в направлении, перпендикулярном щелевому выходному отверстию 4 преобразователя плазмотрона, широкими полосами, равными длине щелевого отверстия.

При малых толщинах деталей (меньше 25 мм) с недостаточным теплоотводом от обрабатываемой поверхности, возникает необходимость организации ее интенсивного охлаждения с целью снижения коробления, для чего обрабатываемая деталь дополнительно подвергается спрейерному охлаждению 5, синхронному с плазменной обработкой, и погружается в охлаждающую ее воду 6 на 1/3 толщины.

Предлагаемый способ плазменного азотирования позволяет получить поверхность обрабатываемой детали с однородными прочностными свойствами и не требующую дополнительной механической обработки.

Пример по п.1 конкретного выполнения. Азотированию подвергался образец 1 из стали 60Г толщиной 40 мм со следующими режимами обработки: ширина сканирования 40 мм; удельная мощность теплового потока 6,22·108 Вт/м2; скорость взаимного перемещения плазмотрон-образец 4 мм/с; расход плазмообразующего газа (азота) - 1,8 г/с. При обработке на этих режимах толщина слоя азотистого аустенита достигает 50 мкм. Из образца вырезали поперечный микрошлиф (по отношению к зоне обработки), который после травления наблюдали в оптическом металлографическом микроскопе при увеличении ×1000.

Как показано на фиг.2, микроструктура состоит из трех слоев: 1 - слой нитридов и оксидов; 2 - слой азотистого аустенита; 3 - слой фермообразного мартенсита. Фазовый состав и параметры кристаллической решетки определялся рентгеноструктурным анализом. Микротвердость легированного слоя измерялась на микротвердомере ПМТ-3 и нарастает от аустенитной зоны - 7,5 ГПа к зоне фермообразного мартенсита - до 9,0 ГПа.

Пример по п.2 конкретного выполнения. Азотированию подвергался образец 2 из стали 60Г толщиной 14 мм со следующими режимами обработки: ширина сканирования 40 мм; удельная мощность теплового потока 6,22·108 Вт/м; скорость взаимного перемещения плазмотрон-образец 4 мм/с; расход плазмообразующего газа (азота) - 1,8 г/с; расход охлаждающей воды - 30 г/с. При обработке на этих режимах толщина слоя азотистого аустенита достигает 50 мкм. Из образца вырезали поперечный микрошлиф (по отношению к зоне обработки), который после травления наблюдали в оптическом металлографическом микроскопе при увеличении ×1000. Микроструктура образца 2 аналогична микроструктуре образца 1.

Плазменное воздействие по предлагаемому способу характеризуется высокими скоростями нагрева и охлаждения, малой длительностью пребывания металла при температурах выше критических, что способствует повышению уровня свойств стали и одновременной реализации химико-термической обработки без оплавления поверхностного слоя детали.

Похожие патенты RU2530192C1

название год авторы номер документа
СПОСОБ ПЛАЗМЕННОГО АЗОТИРОВАНИЯ ДЕТАЛЕЙ 2003
  • Домбровский Ю.М.
  • Пустовойт В.Н.
  • Голованова Н.А.
RU2240375C1
СПОСОБ УПРОЧНЕНИЯ ЛОКОМОТИВНЫХ И ВАГОННЫХ КОЛЕС 2010
  • Шахпазов Евгений Христофорович
  • Филиппов Георгий Анатольевич
  • Белоусов Георгий Станиславович
  • Гетманова Марина Евгеньевна
  • Ромашова Наталья Николаевна
  • Исакаев Магомед-Эмин Хасаевич
  • Тюфтяев Александр Семенович
  • Ильичев Максим Валерьевич
RU2454469C2
СПОСОБ АЗОТИРОВАНИЯ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Белоусов Георгий Станиславович
  • Омельченко Андрей Владимирович
  • Филиппов Георгий Анатольевич
  • Углов Владимир Александрович
  • Ливанова Ольга Викторовна
  • Гетманова Марина Евгеньевна
  • Белоусов Алексей Владимирович
RU2506342C1
Способ азотирования стальных изделий 1987
  • Муравицкий Юрий Павлович
  • Мухин Виктор Сергеевич
  • Линников Вячеслав Михайлович
  • Неганов Михаил Иванович
  • Терегулов Наугат Гиниятуллич
  • Ягудин Анвар Фаридович
  • Хайретдинов Эрнст Фасхиевич
  • Даутов Анвар Ибрагимович
  • Смыслов Анатолий Михайлович
  • Линникова Жанна Вячеславовна
SU1541303A1
СПОСОБ ВЫЯВЛЕНИЯ МИКРОТРЕЩИН, ОБУСЛОВЛЕННЫХ НАЛИЧИЕМ ВОДОРОДА В СТАЛИ 2013
  • Изотов Владимир Ильич
  • Киреева Елена Юрьевна
  • Гетманова Марина Евгеньевна
  • Филиппов Георгий Анатольевич
RU2545464C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПРОФИЛИРОВАННЫХ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ 2006
  • Лаврик Александр Никитович
  • Ефимов Олег Юрьевич
  • Никиташев Михаил Васильевич
  • Чинокалов Валерий Яковлевич
  • Симаков Вадим Петрович
  • Дубинин Сергей Александрович
  • Дикань Олег Валерьевич
RU2325449C2
Способ нанесения порошковых покрытий на поверхность деталей 1986
  • Пархоменко Владимир Дмитриевич
  • Чехун Алексей Иванович
  • Огданский Николай Феодосиевич
  • Надеждин Юрий Львович
  • Крыжановский Михаил Викторович
SU1411102A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПРОКАТНЫХ ВАЛКОВ 2005
  • Юрьев Алексей Борисович
  • Ефимов Олег Юрьевич
  • Чинокалов Валерий Яковлевич
  • Некипелов Семен Прохорович
  • Симаков Вадим Петрович
  • Дубинин Сергей Александрович
  • Никиташев Владимир Михайлович
  • Дикань Олег Валерьевич
  • Саломыкин Виктор Васильевич
  • Затепякин Сергей Валентинович
RU2298043C1
СПОСОБ ИОННО-ПЛАЗМЕННОГО ПРЕЦИЗИОННОГО АЗОТИРОВАНИЯ ПОВЕРХНОСТЕЙ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ 2013
  • Сагалович Владислав Викторович
  • Сагалович Алексей Владиславович
RU2555692C2
СПОСОБ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ СТАЛЬНОЙ ПОВЕРХНОСТИ РЕЖУЩЕГО ИНСТРУМЕНТА 2003
  • Рыбин В.В.
  • Горынин В.И.
  • Попов В.О.
  • Бережко А.И.
  • Попова И.П.
RU2241782C1

Иллюстрации к изобретению RU 2 530 192 C1

Реферат патента 2014 года СПОСОБ ПЛАЗМЕННОГО АЗОТИРОВАНИЯ ДЕТАЛЕЙ

Изобретение относится к области поверхностного упрочнения путем азотирования деталей. Может использоваться при изготовлении деталей и инструмента, к которым предъявляются требования повышенного сопротивления схватыванию и адгезии в парах трения и коррозионной стойкости в условиях влажного воздуха. Плазменное азотирование деталей проводят путем перемещения детали относительно плазмотрона в зоне плазменной струи, формирующейся в преобразователе потока плазмотрона с щелевым выходным отверстием. В качестве плазмообразующего газа используют азот, являющийся одновременно легирующим элементом. Полученный легированный азотом поверхностный слой обеспечивает повышенную износостойкость, усталостную прочность и сопротивление коррозии в условиях абразивного изнашивания с минимальным уровнем деформаций и короблений деталей. 1 з.п. ф-лы, 2 ил., 2 пр.

Формула изобретения RU 2 530 192 C1

1. Способ плазменного азотирования деталей, включающий перемещение обрабатываемой детали относительно плазмотрона, отличающийся тем, что деталь перемещают в зоне плазменной струи, которую формируют в преобразователе потока плазмотрона с щелевым выходным отверстием, причем в качестве плазмообразующего газа и одновременно легирующего элемента используют азот.

2. Способ по п.1, отличающийся тем, что при толщине менее 25 мм обрабатываемую деталь дополнительно подвергают спрейерному охлаждению, синхронному с плазменной обработкой, и погружают деталь в охлаждающую ее воду на 1/3 толщины для снижения коробления.

Документы, цитированные в отчете о поиске Патент 2014 года RU2530192C1

СПОСОБ ПЛАЗМЕННОГО АЗОТИРОВАНИЯ ДЕТАЛЕЙ 2003
  • Домбровский Ю.М.
  • Пустовойт В.Н.
  • Голованова Н.А.
RU2240375C1
Способ химико-термической обработки стальных изделий 1991
  • Пархоменко Владимир Дмитриевич
  • Крыжановский Михаил Викторович
  • Окара Сергей Владимирович
  • Будюк Эдуард Дмитриевич
  • Лысенко Александр Леонидович
SU1836483A3
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2009
  • Михеев Анатолий Егорович
  • Гирн Алексей Васильевич
  • Ивасев Сергей Сергеевич
  • Вахтеев Евгений Валерьевич
RU2427666C1
US 7465362 B2, 16.12.2008
US 20080131479 A1, 05.06.2008

RU 2 530 192 C1

Авторы

Тюфтяев Александр Семенович

Ильичев Максим Валерьевич

Филиппов Георгий Анатольевич

Косырев Константин Львович

Ливанова Ольга Викторовна

Даты

2014-10-10Публикация

2013-03-28Подача