Изобретение относится к способам ремонта радиаторов из алюминиевых сплавов всех типов и назначений, состоящих из бачков и сердцевины в виде параллельных трубок, и может быть использовано для герметизации мест утечек в труднодоступных местах без трудоемких разборочно-сборочных операций.
Известен способ заделки трещин и пробоин порошковыми материалами методом «холодного» газодинамического напыления (ХГДН), включающий нагрев сжатого газа (воздуха), подачу его в сверхзвуковое сопло и формирование в этом сопле сверхзвукового воздушного потока, подачу в этот поток порошкового материала, ускорение этого материала в сопле сверхзвуковым потоком воздуха и направление его на поверхность обрабатываемого изделия (В.Н.Хромов, А.В.Коломейченко, Н.В.Титов, В.Н.Логачев, А.А.Жосан, А.Л.Семешин, В.Н.Коренев, Р.Ю.Блинников. Технология ремонта машин. Лабораторный практикум. Часть II - Орел: изд-во Орел ГАУ, 2009. - 156 с. С. 92-94) [1].
Недостатком известного способа является невозможность герметизации соединений в труднодоступных местах, таких как боковые поверхности параллельных трубок сердцевины радиаторов и соединения этих трубок с бачками. Способ не позволяет обеспечить оптимальный угол атаки 90°±10° при напылении ([1], рис.6, с.106), что приводит к тому, что напыляемый материал не закрепляется на поверхностях, подлежащих герметизации.
Задачей изобретения является устранение негерметичных участков в труднодоступных местах.
Техническим результатом изобретения является оптимизация угла атаки при напылении и закрепление напыляемого материала на поверхностях, подлежащих герметизации в труднодоступных местах.
Поставленная задача и указанный технический результат достигается тем, что в известном способе, включающем нагрев сжатого воздуха, подачу его в сверхзвуковое сопло и формирование в этом сопле сверхзвукового воздушного потока, подачу в этот поток порошкового материала, ускорение этого материала в сопле сверхзвуковым потоком воздуха и направление его на негерметичный участок поверхности обрабатываемого радиатора, СОГЛАСНО ИЗОБРЕТЕНИЮ, дополнительно используют подкладку, выполненную в виде проволоки из алюминиевого сплава, и установленную в непосредственной близости с негерметичным участком поверхности.
Сущность изобретения поясняется чертежами, где:
на фиг.1 - общий вид реализации предлагаемого способа;
на фиг.2 - фрагмент восстановления герметичности боковой поверхности параллельных трубок сердцевины радиаторов без применения подкладки;
на фиг.3 - фрагмент восстановления герметичности боковой поверхности параллельных трубок сердцевины радиаторов с применением подкладки.
Способ восстановления герметичности радиатора осуществляется следующим образом.
В непосредственной близости с местом утечки 1 устанавливается подкладка 2 в виде проволоки из алюминиевого сплава (фиг.1). Далее производится процесс нанесения ХГДН на вышеуказанное место. В случае труднодоступности места утечки (фиг.2), например, боковые поверхности параллельных трубок 3 сердцевины радиаторов и соединения этих трубок с бачками, сопло 4 аппарата не может быть расположено под прямым углом к напыляемой поверхности. Таким образом, подкладка 2 в виде проволоки способствует задерживанию напыляемого порошкового материала в указанных местах.
При напылении на труднодоступный участок происходит задерживание порошка на поверхностях, перпендикулярных к напыляемому потоку частиц порошкового материала (фиг.3). В результате наносимый порошковый материал формирует покрытие в месте примыкания проволоки к герметизируемой поверхности, чем обеспечивает герметизацию места утечки 1 в вышеуказанном участке, надежную работу радиатора за счет армирования соединения силовым элементом в виде проволоки.
После напыления излишки проволоки легко удаляют даже без использования инструмента, производят испытание радиатора опрессовкой. После испытания радиатор готов к эксплуатации.
С использованием предлагаемого способа восстанавливались негерметичные радиаторы масляные трансмиссии энергонасыщенных тракторов, систем охлаждения двигателей, систем кондиционирования и т.д.
Напыление производят с помощью оборудования «ДИМЕТ», мод.403, порошковым материалом А-20-11, предназначенным для формирования герметизирующего соединения, содержащим порошок алюминия с размером частиц 1-50 мкм, порошок цинка размером частиц 1-100 мкм и порошок карбида кремния с размером частиц 1-60 мкм.
После восстановления радиаторов заявленным способом проводилось испытание на герметичность (давлением 0,5 МПа), разгерметизации покрытий обнаружено не было.
Таким образом, предлагаемый способ обеспечивает высокое качество ремонта, увеличение прочности сцепления газодинамического покрытия и стойкости герметизирующего соединения, возможность работы при максимальном давлении.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВОССТАНОВЛЕНИЯ ИЗДЕЛИЙ | 1999 |
|
RU2166421C1 |
Способ получения биметаллов с односторонним или двусторонним плакированием с помощью "холодного" газодинамического напыления (ХГДН) | 2021 |
|
RU2787322C1 |
Способ напыления градиентного покрытия на основе композиционного порошка системы Al:SiN:SiAlON | 2021 |
|
RU2785506C1 |
СПОСОБ ГАЗОДИНАМИЧЕСКОГО НАНЕСЕНИЯ ПОКРЫТИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2237746C1 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ ИЗ ПОРОШКОВЫХ МАТЕРИАЛОВ | 2001 |
|
RU2195515C2 |
Способ получения функционально-градиентных покрытий на металлических изделиях | 2021 |
|
RU2763698C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННЫХ ФУНКЦИОНАЛЬНО-ГРАДИЕНТНЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ | 2007 |
|
RU2354749C2 |
Способ получения функционального покрытия на основе алюминий-углеродных нановолокон | 2018 |
|
RU2709688C1 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО МАТЕРИАЛА | 2013 |
|
RU2560472C2 |
СПОСОБ НАНЕСЕНИЯ ФУНКЦИОНАЛЬНЫХ ПОКРЫТИЙ С ВЫСОКИМИ АДГЕЗИВНЫМИ СВОЙСТВАМИ | 2004 |
|
RU2285746C2 |
Изобретение относится к теплотехнике и может быть использовано при ремонте радиаторов из алюминиевых сплавов всех типов и назначений для герметизации мест утечек в труднодоступных местах без трудоемких разборочно-сборочных операций. В способе восстановления герметичности радиатора, включающем нагрев сжатого воздуха, подачу его в сверхзвуковое сопло и формирование в этом сопле сверхзвукового воздушного потока, подачу в этот поток порошкового материала, ускорение этого материала в сопле сверхзвуковым потоком воздуха и направление его на негерметичный участок поверхности обрабатываемого радиатора, дополнительно используют подкладку, выполненную в виде проволоки из алюминиевого сплава и установленную в непосредственной близости с негерметичным участком поверхности. Технический результат - обеспечение высокого качества ремонта, увеличение прочности сцепления газодинамического покрытия и стойкости герметизирующего соединения, возможность работы при максимальном давлении. 3 ил.
Способ восстановления герметичности радиатора, включающий нагрев сжатого воздуха, подачу его в сверхзвуковое сопло и формирование в этом сопле сверхзвукового воздушного потока, подачу в этот поток порошкового материала, ускорение этого материала в сопле сверхзвуковым потоком воздуха и направление его на негерметичный участок поверхности обрабатываемого радиатора, отличающийся тем, что дополнительно используют подкладку, выполненную в виде проволоки из алюминиевого сплава и установленную в непосредственной близости с негерметичным участком поверхности.
УСТРОЙСТВО ДЛЯ ГАЗОДИНАМИЧЕСКОГО НАНЕСЕНИЯ ПОКРЫТИЙ ИЗ ПОРОШКОВЫХ МАТЕРИАЛОВ | 1996 |
|
RU2100474C1 |
Способ получения алюминиевых покрытий | 1983 |
|
SU1618782A1 |
СПОСОБ РЕМОНТА ПОВРЕЖДЕННЫХ УЧАСТКОВ ВНЕШНЕЙ ОБШИВКИ САМОЛЕТА | 2006 |
|
RU2414546C2 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ | 2010 |
|
RU2450087C2 |
US 2003190413 A1 (VAN STEENKISTE THOMAS HUBERT and al.) 09.10.2003 |
Авторы
Даты
2014-12-10—Публикация
2013-05-06—Подача