Изобретение относится к газовой хроматографии и может быть использовано для идентификации неизвестных компонентов сложных смесей веществ природного и техногенного происхождения в различных отраслях промышленности: химической, газовой, нефтяной, медицине, экологии, пищевой, парфюмерной и др.
Известны способы определения молекулярной массы неизвестных компонентов с использованием детектора по плотности или детектора по теплопроводности на двух различных газах-носителях (см.: Вигдергауз М.С., Измайлов Р.И. Применение газовой хроматографии для определения физико-химических свойств веществ, М.: Наука, 1970, С. 83, см. также: Андреев Л.В., Афанасьев М.И., Чаброва О.Г., Вигдергауз М.С.//Успехи химии, 1965. Т. 34. №5. С. 920).
Недостатком способа является длительность анализа, так как для определения молекулярной массы вещества требуется провести два цикла анализа с двумя различными по молекулярной массе газами-носителями.
Возможно также определение молекулярной массы неизвестных компонентов смеси с использованием соотношения массовых и мольных коэффициентов чувствительности двух детекторов по теплопроводности и пламенно-ионизационного (см.: Арутюнов Ю.И., Онучак Л.А., Кудряшов С.Ю., Гузенко О.Г. Хроматографический способ определения молекулярной массы. Патент РФ №2145709 от 20 февраля 2000 г.//Бюл. изобр. №5, 2000).
Однако известные способы не обеспечивают возможность одновременного определения молекулярной массы и температуры кипения неизвестных компонентов смеси.
Известен также способ определения молекулярной массы и температуры кипения для неизвестных компонентов исследуемой смеси с использованием комплексной хроматографической информации по удерживанию сорбатов неполярной фазой и сигналам двух наиболее распространенных детекторов по теплопроводности и пламенно-ионизационного, что позволяет получать из одного цикла хроматографического анализа дополнительную информацию об индексах чувствительности каждого детектора, индексах молекулярной массы и температуры кипения (см.: Арутюнов Ю.И., Кудряшов С.Ю., Онучак Л.А. Газохроматографический анализ смесей, содержащих неизвестные компоненты. Определение температуры кипения//Сорбционные и хроматографические процессы, 2005. Т. 5. №4. С. 578-589).
Недостатком этого способа является получение дополнительной информации с помощью детектора по теплопроводности, который обладает повышенной инерционностью и не может применяться с высокоэффективными капиллярными колонками.
Наиболее близким к изобретению по совокупности существенных признаков является способ определения молекулярной массы и температуры кипения неизвестных компонентов смеси с использованием хромато-распределительного метода и газового хроматографа с капиллярной колонкой и пламенно-ионизационным детектором (см.: Арутюнов Ю.И., Онучак Л.А., Платонов И.А., Никитченко Н.В. Применение хромато-распределительного метода для определения молекулярной массы и температуры кипения неизвестных компонентов смеси//Сорбционные и хроматографические процессы, 2011. Т.11. №4. С. 502-510).
Недостатком известного способа является относительно невысокая точность определения молекулярной массы и температуры кипения.
Задачей изобретения является повышение точности определения молекулярной массы и температуры кипения неизвестных компонентов анализируемой смеси.
Эта задача решается за счет того, что в способе определения молекулярной массы и температуры кипения неизвестных компонентов смеси хромато-распределительным методом, при котором анализируемую смесь дозируют в двухфазную систему из несмешивающихся жидкостей гексан-ацетонитрил, процентное содержание неизвестных компонентов в каждой фазе определяют газохроматографическим методом и рассчитывают их константы распределения Ксi и индексы удерживания при линейном программировании температуры колонки
При решении поставленной задачи создается технический результат, заключающийся в следующем:
1. Вместо построения корреляционных зависимостей для каждого отдельного гомологического ряда или класса органических соединений проводят градуировку только по одному классу веществ сравнения н-алканов в виде линейной зависимости логарифма константы распределения lg Kс от индекса удерживания, равного помноженному на 100 числу углеродных атомов в молекулах н-алканов.
где j-коэффициент, характеризующий групповую принадлежность; K=0,001 - усредненный коэффициент, характеризующий систему выбранных растворителей и зависит от различия свободных энергий сольватации СН2-группы для гомологов аналитов. Логарифмы Кс для других веществ, принадлежащих к отличным от н-алканов гомологическим рядам, определяют из этой зависимости (1) в виде индексов константы распределения Ilgk, представляющих собой помноженное на 100 число углеродных атомов в молекуле такого гипотетического н-алкана, у которого одинаковое с исследуемым веществом значение lgКс.
2. Вместо коэффициента j в уравнении (1) для определения групповой принадлежности используют разность индексов удерживания и индексов логарифма константы распределения
Индексы удерживания
3. Индексы молекулярной массы JMi и температуры кипения JTi неизвестных компонентов смеси определяют по уравнениям
где аM и аT - поправочные коэффициенты для исследуемого гомологического ряда или класса органических соединений.
В прототипе для определения JM и JT используют различные корреляционные зависимости в зависимости от величины коэффициента j в уравнении (1).
Пример конкретного выполнения способа.
Эксперименты проводили на газовом хроматографе "Кристалл 5000.2" "ЗАО СКБ Хроматэк" с пламенно-ионизационным детектором с использованием кварцевой капиллярной колонки VF-l("Varian",CHIA) с неполярной полидиметилсилоксановой неподвижной фазой (30 м×0,32 мм×0,5 мкм) в режиме линейного программирования температуры колонки от 40°C со скоростью 5°С/мин до температуры 200°С. Газ-носитель - азот. Объем вводимой пробы 0,5 мкл. Деление потока на входе в колонку 1:100.
Объектами исследования являлись 20 органических соединений, принадлежащих к различным гомологическим рядам и классам соединений и смесь веществ сравнения н-алканов (от пентана до ундекана включительно). Для анализа готовили модельные смеси. Состав компонентов выбирали так, чтобы на хроматограмме не проявлялись перекрытые пики.
Для определения констант распределения исследуемых сорбатов в герметичный сосуд помещали 2,0 см3 гексана и 2,0 см3 ацетонитрила, предварительно осушенного молекулярным ситом КА. В полученную двухфазную систему вводили модельную смесь сорбатов или смесь н-алканов в количестве около 0,4 см3. Полученную смесь встряхивали в течение нескольких минут при комнатной температуре. После расслоения из каждого слоя отбирали пробы микрошприцом для анализа.
По результатам газохроматографического анализа рассчитывали:
- Константы распределения сорбатов Kci
где
- Индексы удерживания Ван ден Доола и Кратса при линейном программировании температуры колонки
где tRi, tRZ и tRz+i - времена удерживания и i-го сорбата и соседних гомологов н-алканов с числом углеродных атомов в молекулах z и z+1 соответственно.
1. В известном способе с использованием экспериментальных данных строили зависимости логарифма константы распределения для всех исследуемых сорбатов от числа углеродных атомов в молекулах их гомологов по уравнению (1) и определяли коэффициент j, взятый с обратным знаком, который характеризует групповую принадлежность сорбатов.
- Если величина j-фактора изменяется от -0.5 до +0.15, то для определения индекса молекулярной массы использовали следующее корреляционное уравнение
- При j>0,15,
где
- При j-факторе, изменяющемся от -0.5 до +0.75, для определения индекса температуры кипения использовали уравнение
- При j>0.75
- Молекулярную массу рассчитывали по уравнению для н-алканов
Мi=14×JMi+2 (10)
- Температуру кипения в (°C) определяли по уравнению для н-алканов
lgTbi=2,2298lgJTi-0,041JTi+0,4195 (11)
- Оценку правильности определения Mi и Tbi проводили с использованием справочных данных для компонентов модельный смеси
2. В предлагаемом способе с использованием экспериментальных данных строят зависимость логарифма константы распределения только для одного гомологического ряда стандартных веществ сравнения н-алканов по уравнению (1). Логарифмы констант распределения для других веществ, принадлежащих к отличным от н-алканов гомологическим рядам, подставляют в уравнение (1) и определяют индекс логарифма константы распределения i-го компонента. IlgK, представляющий собой помноженное на 100 число углеродных атомов в молекуле такого гипотетического н-алкана, у которого одинаковое с исследуемым сорбатом значение lgKc.
- Групповая принадлежность исследуемого сорбата определяется из уравнения (2) как разность индексов удерживания и индексов логарифма константы распределения ΔI,lgK.
- Индексы молекулярной массы IМi и температуры кипения IТ исследуемых сорбатов определяют по уравнениям (3).
В Таблице 1 приведены значения поправочных коэффициентов аM и аT в зависимости от величины разности индексов ΔI,lgK
Экспериментальная оценка выполнения предлагаемого и известного способов определения молекулярной массы и температуры кипения неизвестных компонентов смеси хромато-распределительным методом проводилась на примере анализа модельных смесей, содержащих 20 органических соединений, принадлежащих к различным гомологическим рядам и классам органических соединений. Результаты эксперимента представлены в Таблице 2 «Сравнительные данные экспериментальной проверки известного и предлагаемого способов».
Сравнительные данные экспериментальной проверки известного и предлагаемого способов
92
Продолжение таблицы 2
Как видно из приведенных в Таблице 2 данных, предлагаемый способ обеспечивает определение молекулярной массы и температуры кипения с большей точностью, чем известный способ. Так, наибольшая погрешность определения молекулярной массы предполагаемым способом составила для изобутилпропионата только δM=5.8%, в то время как для известного способа правильность определения молекулярной массы достигла 18,1% для метилацетата, 18,0% для циклопентана, 13,7% для этанола и 16,6%.
Максимальная погрешность определения температуры кипения известным способом составила δT=98,4% для пентена-1, для циклогексана 54,1% и для этанола 27,7%. Повышение погрешности определения температуры кипения характерно для первых, начальных членов гомологического ряда. Для сравнения погрешность определения температуры кипения этих же компонентов предлагаемым способом значительно уменьшилась: для циклопентана в 3,3 раза, для пентена-1 в два раза и для этанола в 1,7 раза.
Использование предлагаемого способа определения молекулярной массы и температуры кипения неизвестных компонентов смеси хромато-распределительным методом позволяет:
1. Значительно повысить точность определения молекулярной массы и температуры кипения неизвестных компонентов анализируемой смеси.
2. Повысить достоверность качественного газохроматографического анализа за счет дополнительной информации об аналитах в виде молекулярной массы и температуры кипения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОГНОЗИРОВАНИЯ ПРЕИМУЩЕСТВЕННО ПРОНИКАЮЩЕГО ЧЕРЕЗ ПЕРВАПОРАЦИОННУЮ МЕМБРАНУ КОМПОНЕНТА РАЗДЕЛЯЕМОЙ СМЕСИ С ПОМОЩЬЮ МЕТОДА ОБРАЩЕННОЙ ГАЗОВОЙ ХРОМАТОГРАФИИ | 2012 |
|
RU2511371C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СООТВЕТСТВИЯ ХРОМАТОГРАФИЧЕСКИХ ПИКОВ ОДНОМУ И ТОМУ ЖЕ КОМПОНЕНТУ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2556759C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СООТВЕТСТВИЯ ХРОМАТОГРАФИЧЕСКИХ ПИКОВ, ПОЛУЧЕННЫХ НА КОЛОНКАХ С ПОЛЯРНОЙ И НЕПОЛЯРНОЙ ФАЗАМИ, ОДНОМУ И ТОМУ ЖЕ КОМПОНЕНТУ ПРОБЫ | 2014 |
|
RU2570233C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГАЗОХРОМАТОГРАФИЧЕСКИХ ИНДЕКСОВ УДЕРЖИВАНИЯ СОЕДИНЕНИЙ РЯДА О-АЛКИЛМЕТИЛФТОРФОСФОНАТОВ ПО ДАННЫМ ЯМР С | 2013 |
|
RU2549609C9 |
Хромадистилляционный способ анализа жидких смесей | 1982 |
|
SU1037173A1 |
СПОСОБ ОЦЕНКИ ПОДЛИННОСТИ ЛЕКАРСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2452944C1 |
Способ идентификации фосфорорганических примесей, сопутствующих токсичным О-алкилалкилфторфосфонатам | 2016 |
|
RU2643236C2 |
СПОСОБ ИДЕНТИФИКАЦИИ СПИРТА ЭТИЛОВОГО И ЭТАНОЛСОДЕРЖАЩИХ ЖИДКОСТЕЙ | 2007 |
|
RU2348032C2 |
СПОСОБ ГАЗОХРОМАТОГРАФИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОНСТАНТЫ РАСПРЕДЕЛЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2227289C2 |
Способ контроля стабильности условий газохроматографического анализа | 1977 |
|
SU666472A1 |
Изобретение используется для идентификации неизвестных компонентов сложных смесей веществ природного и технического происхождения в различных отраслях промышленности: химической, газовой, нефтяной, медицине, экологии, пищевой, парфюмерной и др. Сущность изобретения заключается в том, что в способе анализируемую смесь дозируют в двухфазную систему из несмешивающихся жидкостей гексан-ацетонитрил. Затем методом газовой хроматографии определяют процентное содержание компонентов в каждой фазе и их логарифмы констант распределения, выраженных в виде индексов, а также индексы удерживания компонентов неполярной фазы при линейном программировании температуры колонки, а разность индексов удерживания и индексов логарифма константы распределения используют для определения индексов молекулярной массы и температуры кипения. Техническим результатом является повышение точности определения молекулярной массы и температуры кипения. 2 табл.
Способ определения молекулярной массы и температуры кипения неизвестных компонентов смеси хромато-распределительным методом, при котором анализируемую смесь дозируют в двухфазную систему из несмешивающихся жидкостей гексан-ацетонитрил, процентное содержание неизвестных компонентов в каждой фазе определяют газохроматографическим методом и рассчитывают их константы распределения и индексы удерживания при линейном программировании температуры колонки, а молекулярную массу и температуру кипения рассчитывают по индексам молекулярной массы и температуры кипения, вычисляемых по корреляционным уравнениям с учетом зависимости логарифма константы распределения от индекса удерживания, отличающийся тем, что логарифм константы распределения выражают в относительных единицах в виде индексов в масштабе шкалы стандартных веществ сравнения н-алканов, хроматографируемых в идентичных условиях, а разность индексов удерживания и индексов логарифма константы распределения используют совместно с индексом удерживания для определения индексов молекулярной массы и температуры кипения.
Арутюнов Ю.И., Онучак Л.А., Платонов И.А., Никитченко Н.В | |||
Применение хромато-распределительного метода для определения молекулярной массы и температуры кипения неизвестных компонентов смеси//Сорбционные и хроматографические процессы, Т.П | |||
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
С | |||
Мерная кружка для жидких тел | 1914 |
|
SU502A1 |
Никитченко Н,В., Определение состава экстрактов расторопши пятнистой хроматографическими |
Авторы
Даты
2014-12-20—Публикация
2013-05-24—Подача