СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИЛАПАТИТНОЙ КЕРАМИКИ В КАЧЕСТВЕ МОДЕЛИ ТВЕРДЫХ ТКАНЕЙ ЗУБА Российский патент 2014 года по МПК A61K6/02 C04B35/447 

Описание патента на изобретение RU2537247C1

Данное изобретение относится к медицине, а именно к стоматологии, и касается способа получения гидроксилапатитной керамики в качестве модели твердых тканей зуба для лабораторных испытаний стоматологических материалов in vitro.

Развитие стоматологических материалов для реставрации зубов, рост предложений современных реставрационных материалов разного химического состава для клинической практики выдвигают серьезные требования к объективной оценке качества созданных композиций, позволяющих прогнозировать функциональную и эстетическую полноценность реставраций и определять их долговечность.

Долговечность реставраций зубов и зубного ряда во многом определяется стойкостью реставрационных материалов к истиранию - процессу, неизбежно возникающему в полости рта при нормальном функционировании реставрированного зубного ряда.

Для изучения трибологических характеристик (характеристик истирания) стоматологических материалов используют три типа методов исследования процесса их износа:

- in vivo наблюдения и измерения,

- in vitro лабораторное моделирование,

- in situ испытания.

Однако in vivo, а также и in situ, методы имеют известные недостатки, которые ограничивают их использование для исследования процессов износа стоматологических материалов.

Во-первых, невозможно методами in vivo и in situ изолировать и отделить процессы, трения, абразии и эрозии. Несмотря на попытки унифицировать условия испытаний, не удается устранить субъективный фактор, значительно изменяющий данные наблюдений от субъекта к субъекту, из-за чего возникают проблемы в интерпретации результатов.

Во-вторых, трудно осуществлять контроль над важными переменными факторами, которые могут влиять на характеристики износа (такими как жевательная сила, диета или характеристики окружающей среды).

Кроме того, в условиях in vivo и in situ невозможно ускорить процессы износа, в то же время, проведение исследований зависит от согласия добровольцев.

Испытания in vitro дают исследователям большие возможности контролировать экспериментальные условия и, следовательно, получать более точные результаты измерений, чем испытания in vivo.

Кроме того, in vitro оценку стоматологических материалов можно провести за относительно короткие периоды времени в сравнении с клиническими наблюдениями.

Методы оценки износостойкости в лабораторных условиях представлены в международном стандарте ISO/TS 14569-2:2001. Данный стандарт устанавливает методы испытаний материалов для оценки сопротивления износу, происходящему на окклюзионных поверхностях реставраций, натуральных или искусственных зубов в результате физиологических воздействий антагониста на испытуемый материал в ротовой полости. В качестве антагонистов предлагают различные материалы: сплавы, керамику или композиты.

Кроме того, многие методы используют в качестве антагонистов удаленные зубы [Zhou Z.R., J. Zheng. Tribology of dental materials: a review. J. Phys. D: Appl. Phys., 2008, v.41, 22 pp.].

Следует отметить, что использование в качестве антагонистов удаленных зубов создает определенные трудности в проведении лабораторных испытаний, связанные со значительным разнообразием натуральных тканей по их структуре, геометрической форме и основным свойствам. В связи с этим использование керамического материала на основе гидроксилапатита в качестве модели твердых тканей зуба при проведении лабораторных испытаний износостойкости материалов для реставрации зубов и зубного ряда наиболее привлекательно.

Известен способ получения гидроксилапатитной керамики в виде образца для испытаний путем прессования гидроксилапатита в присутствии пластификатора с последующим его спеканием [Пат. РФ №2259811, A61K 6/02, 07.06.2004].

Гидроксилапатитная керамика, полученная по данному способу, содержит кальций и фосфор в соотношении 1,50:1,67; ее кажущаяся плотность составляет величину 3,0-3,1 г/см3, открытая пористость составляет не более 1%, а тест-поверхность имеет чистоту не ниже 10 класса точности.

Однако данная гидроксилапатитная керамика имеет тот недостаток, что использование ее в качестве модели твердых тканей зуба как антагониста или контртела при проведении лабораторных испытаний или испытаний in vitro износостойкости приведет к значительному его истиранию в отличие от эмали натурального зуба из-за недостаточной твердости поверхности и наличия пористости.

Техническим результатом данного изобретения является повышение твердости поверхности гидроксилапатитной керамики для модельного образца до уровня поверхностной твердости натуральной эмали зуба.

Технический результат достигается тем, что в способе получения гидроксилапатитной керамики в качестве модели твердых тканей зуба путем прессования гидроксилапатита с последующим его спеканием отличительной особенностью является то, что прессование гидроксилапатита проводят при давлении 20-25 МПа, далее на поверхность полученного образца спрессованного гидроксилапатита наносят 0,25-0,75% водный раствор борной кислоты в количестве 0,05-0,10 мл/см2, затем образец нагревают до температуры 700-780°C со скоростью 20-40°C/мин, создают разрежение 700-750 мм рт.ст., продолжают нагрев до температуры 1050-1100°C, при этой температуре выдерживают образец в вакууме в течение 30-40 мин, после чего повышают температуру до 1100-1150°C и продолжают спекание при атмосферном давлении в течение 30-40 мин.

Способ осуществляют следующим образом.

Получение гидроксилапатитной керамики в качестве модели твердых тканей зуба проводят путем прессования порошка гидроксилапатита с помощью гидравлического пресса, обеспечивающего давление 20-25 МПа.

На поверхность образца из прессованного гидроксилапатита наносят борную кислоту в виде 0,25-0,75% водного раствора в количестве 0,05-0,10 мл/см2.

Отсутствие в составе для прессования пластификатора или связующего позволяет повысить поверхностную твердость образца до 320 ед. Викерса.

Спрессованный образец нагревают до температуры 700-780°C со скоростью 20-40°C/мин, при этой температуре создают разрежение 700-750 мм рт.ст., продолжают нагрев до 1050-1100°C, выдерживают образец при указанной температуре в вакууме в течение 30-40 мин, повышают температуру до 1100-1150°C и продолжают спекание при атмосферном давлении в течение 30-40 мин с последующим постепенным охлаждением на воздухе.

Пример 1.

Для изготовления модельного образца гидроксилапатитной керамики берут 0,5 г порошка гидроксилапатита и помещают в пресс-форму для изготовления модели сферической формы диаметром 0,6 см.

На гидравлическом прессе под давлением 20 МПа получают прессованный сырой образец сферической формы. После извлечения сырого образца из пресс-формы на его поверхность кисточкой равномерно наносят 0,05 мл (0,09 мл/см2) раствора борной кислоты концентрации 0,25% масс.

Затем образец помещают в обжиговую камеру вакуумной печи и поднимают температуру в камере до 700°C со скоростью нагрева 20°C/мин, включают вакуумный насос и откачивают воздух в печи до разрежения 750 мм рт.ст. Доводят температуру до 1050°C. Образец выдерживают в камере под вакуумом при этой температуре в течение 30 мин. Затем температуру в камере поднимают до 1100°C и отключают вакуум. При температуре 1100°C и атмосферном давлении образец выдерживают 30 мин и переходят к охлаждению образца, медленно перемещая его из обжиговой камеры на воздух в течение 2 мин.

Поверхностная твердость образца, измеренная на микротвердомере Duramin 20, равна 320 ед. Викерса. Испытания износостойкости композитного материала проводят на установке УИСМ-1 при круговом перемещении модельного образца гидроксилапатитной керамики, приготовленного как указано выше, в качестве контртела по поверхности испытуемого плоского образца композита. Показатель износа композита под действием модельного образца гидроксилапатитной керамики в качестве контртела составляет 0,9 мм3/час, показатель износа композита под действием натурального зуба в качестве контртела составляет 0,98 мм3/час.

Пример 2.

Для изготовления модельного образца гидроксилапатитной керамики берут 0,6 г порошка гидроксилапатита и помещают в пресс-форму для изготовления модели таблетки диаметром 1 см. На гидравлическом прессе под давлением 25 МПа получают прессованный сырой образец в форме таблетки. После извлечения сырого образца из пресс-формы на его поверхность кисточкой равномерно наносят 0,08 мл (0,1 мл/см2) раствора борной кислоты концентрации 0,75% масс. Затем образец помещают в обжиговую камеру вакуумной зуботехнической печи и поднимают температуру в камере до 780°C со скоростью нагрева 40°C/мин, включают вакуумный насос и откачивают воздух в печи до разрежения 700 мм рт.ст. Продолжают нагрев до температуры 1100°C. Образец выдерживают в камере под вакуумом при данной температуре в течение 40 мин. Затем температуру в камере поднимают до 1150°C и отключают вакуум. При температуре 1150°C и атмосферном давлении образец выдерживают 40 мин и переходят к охлаждению образца, медленно перемещая его из обжиговой камеры на воздух в течение 2,5 мин.

Поверхностная твердость образца, измеренная на микротвердомере Duramin 20, равна 314 ед. Викерса. Испытания износостойкости композитного материала проводят на установке УИСМ-1 при круговом перемещении в качестве контртела модельного образца гидроксилапатитной керамики, приготовленного как указано выше, по поверхности испытуемого плоского образца композита. Показатель износа композита под действием модельного образца гидроксилапатитной керамики в качестве контртела составляет 0,6 мм3/час, показатель износа данного композита под действием натурального зуба в качестве контртела составляет 0,8 мм3/час.

Похожие патенты RU2537247C1

название год авторы номер документа
Способ получения гибридной керамики на основе гидроксилапатита в качестве модели твердых тканей зуба 2023
  • Поюровская Ирина Яковлевна
  • Пожарков Олег Фёдорович
  • Русанов Фёдор Сергеевич
  • Дьяконенко Елена Евгеньевна
  • Тартаковский Константин Эдуардович
RU2820536C1
КОМПОЗИТНЫЙ МАТЕРИАЛ НА ОСНОВЕ ОКСИДА ЦИРКОНИЯ 2013
  • Готтвик Лукас
  • Кунтц Майнхард
  • Порпорати Алессандро Алан
  • Эрлих Юлиане
  • Морхардт Андреас
  • Фридерих Килиан
RU2640853C2
ОДНОФАЗНЫЕ И МНОГОФАЗНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ОКСИДА ЦИРКОНИЯ 2014
  • Кунтц Майнхард
  • Фридерих Килиан
  • Готтвик Лукас
  • Морхардт Андреас
  • Эрлих Юлианэ
RU2662486C2
ЛИТИЕВО-СИЛИКАТНЫЕ СТЕКЛОКЕРАМИКА И СТЕКЛО С ОКСИДОМ ЧЕТЫРЕХВАЛЕНТНОГО МЕТАЛЛА 2012
  • Ритцбергер Кристиан
  • Апель Эльке
  • Хеланд Вольфрам
  • Райнбергер Фолькер
RU2633485C2
ЛИТИЕВО-СИЛИКАТНЫЕ СТЕКЛОКЕРАМИКА И СТЕКЛО С ОКСИДОМ ПЯТИВАЛЕНТНОГО МЕТАЛЛА 2012
  • Ритцбергер Кристиан
  • Апель Эльке
  • Хеланд Вольфрам
  • Райнбергер Фолькер
RU2648447C2
ЛИТИЕВО-СИЛИКАТНЫЕ СТЕКЛОКЕРАМИКА И СТЕКЛО С ОКСИДОМ ШЕСТИВАЛЕНТНОГО МЕТАЛЛА 2012
  • Ритцбергер Кристиан
  • Апель Эльке
  • Хеланд Вольфрам
  • Райнбергер Фолькер
RU2607557C2
ЛИТИЕВО-СИЛИКАТНЫЕ СТЕКЛОКЕРАМИКА И СТЕКЛО С ОКСИДОМ ОДНОВАЛЕНТНОГО МЕТАЛЛА 2012
  • Ритцбергер Кристиан
  • Апель Эльке
  • Хеланд Вольфрам
  • Райнбергер Фолькер
RU2606999C2
МНОГОФУНКЦИОНАЛЬНЫЕ БИОСОВМЕСТИМЫЕ НАНОСТРУКТУРНЫЕ ПЛЕНКИ ДЛЯ МЕДИЦИНЫ 2007
  • Левашов Евгений Александрович
  • Штанский Дмитрий Владимирович
  • Глушанкова Наталья Александровна
  • Решетов Игорь Владимирович
RU2333009C1
КОМПОЗИЦИОННЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Подзорова Людмила Ивановна
  • Ильичёва Алла Александровна
  • Пенькова Ольга Ивановна
  • Шворнева Людмила Ивановна
RU2569113C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО НАНОКОМПОЗИЦИОННОГО МАТЕРИАЛА И МАТЕРИАЛ, ИЗГОТОВЛЕННЫЙ ЭТИМ СПОСОБОМ 2008
  • Герасин Виктор Анатольевич
  • Антипов Евгений Михайлович
  • Калошкин Сергей Дмитриевич
  • Чердынцев Виктор Викторович
  • Ергин Константин Сергеевич
RU2403269C2

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИЛАПАТИТНОЙ КЕРАМИКИ В КАЧЕСТВЕ МОДЕЛИ ТВЕРДЫХ ТКАНЕЙ ЗУБА

Изобретение относится к медицине, а именно к стоматологии, и касается способа получения гидроксилапатитной керамики в качестве модели твердых тканей зуба для лабораторных испытаний стоматологических материалов in vitro. Для осуществления способа проводят прессование гидроксилапатита при давлении 20-25 МПа, далее на поверхность полученного образца спрессованного гидроксилапатита наносят 0,25-0,75% водный раствор борной кислоты в количестве 0,05-0,10 мл/см2, затем образец нагревают до температуры 700-780°C со скоростью 20-40°C/мин, создают разрежение 700-750 мм рт.ст., продолжают нагрев до температуры 1050-1100°C, при этой температуре выдерживают образец в вакууме в течение 30-40 мин, после чего повышают температуру до 1100-1150°C и продолжают спекание при атмосферном давлении в течение 30-40 мин. Твердость поверхности получаемой гидроксилапатитной керамики для модельного образца приближена к уровню поверхностной твердости натуральной эмали зуба, что позволяет использовать ее при проведении лабораторных испытаний износостойкости материалов для реставрации зубов и зубного ряда. 2 пр.

Формула изобретения RU 2 537 247 C1

Способ получения гидроксилапатитной керамики в качестве модели твердых тканей зуба путем прессования гидроксилапатита с последующим его спеканием, отличающийся тем, что прессование гидроксилапатита проводят при давлении 20-25 МПа, далее на поверхность полученного образца спрессованного гидроксилапатита наносят 0,25-0,75% водный раствор борной кислоты в количестве 0,05-0,10 мл/см2, затем образец нагревают до температуры 700-780°C со скоростью 20-40°C/мин, создают разрежение 700-750 мм рт.ст., доводят температуру до 1050-1100°C, выдерживают образец при этой температуре в вакууме в течение 30-40 мин, после чего повышают температуру до 1100-1150°C и продолжают спекание при атмосферном давлении в течение 30-40 мин.

Документы, цитированные в отчете о поиске Патент 2014 года RU2537247C1

МАТЕРИАЛ ОБРАЗЦА ДЛЯ ИСПЫТАНИЯ ЗУБНОЙ ПАСТЫ НА ОЧИЩАЮЩУЮ СПОСОБНОСТЬ И ИЗГОТОВЛЕННЫЙ ИЗ НЕГО ОБРАЗЕЦ 2004
  • Болдин А.А.
RU2259811C1
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
ROOTARE H.M
et al
Sintered Hydroxyapatite Ceramic for Wear Studies
J
Dent
Res
Чугунный экономайзер с вертикально-расположенными трубами с поперечными ребрами 1911
  • Р.К. Каблиц
SU1978A1
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
СПОСОБ ВКЛЮЧЕНИЯ РТУТНЫХ ВЫПРЯМИТЕЛЕЙ В ЦЕПЬ ПЕРЕМЕННОГО ТОКА ДЛЯ ПОЛУЧЕНИЯ ПОСТОЯННОГО ТОКА ВЫСОКОГО НАПРЯЖЕНИЯ 1921
  • Вологдин В.П.
SU777A1

RU 2 537 247 C1

Авторы

Дьяконенко Елена Евгеньевна

Поюровская Ирина Яковлевна

Пожарков Олег Федорович

Сутугина Татьяна Фёдоровна

Даты

2014-12-27Публикация

2013-12-09Подача