СПОСОБ КАТАЛИТИЧЕСКОЙ ГАЗИФИКАЦИИ БИОМАССЫ С ПОЛУЧЕНИЕМ ГАЗООБРАЗНЫХ ТОПЛИВ Российский патент 2015 года по МПК C10B53/00 C10B57/00 C10L3/00 

Описание патента на изобретение RU2538966C2

Изобретение относится к области энергетики и использования возобновляемых источников сырья - биомассы. Изобретение применяется для получения горючего газа из биомассы. Получаемый горючий газ может быть использован для получения электрической энергии в биотопливных газодизельных генераторах или в качестве сырья для синтеза жидких топлив (синтез Фишера-Тропша).

Известны различные способы термохимической переработки биомассы в синтез-газ (смеси газов H2 и CO различного стехиометрического состава), которые заключаются в подаче биомассы в установки пиролизного или газогенераторного типа. Например, известен способ термохимической переработки биомассы (RU 2464295 С2), который осуществляется путем нагрева измельченной биомассы в термохимическом реакторе, содержащем обратные и нагретые до температуры пиролиза газообразные продукты (синтез-газ, пары воды, СО2) и не содержит свободного кислорода. Процесс проводят при переработке древесных опилок и щепы с размером фракций от 2 до 15 мм в интервале температур 600-1100°C, при давлении 0,1÷10,0 МПа. Регулируя производительность вентилятора для циркулирующего газового потока, скорость подачи сырья, температуру газа-носителя и давление в системе циркуляции газообразных продуктов пиролиза, осуществляют управление скоростью газификации углистого остатка углекислым газом и парами воды, что увеличивает эффективность получения синтез-газа из биомассы.

Недостатком этого метода является высокая энергоемкость процесса, которая обусловлена высокими интервалами температур: 600÷1100°C, а также неизбежен высокий выход пиролизной жидкости и смол, поскольку в процессе не используются катализаторы, увеличивающие скорость разрушения смол и, соответственно, повышающие выход газообразных продуктов.

Также известен способ переработки получения углеводородов путем каталитической гидродеоксигенации продуктов быстрого пиролиза биомассы и разработки катализатора для этого процесса (RU 2335340, B01J 23/89, B01J 23/72, B01J 23/755, C07C 7/148, C07C 7/00, B01J 37/02, B01J 37/16, B01J 37/03).

Описан катализатор гидродеоксигенации кислородосодержащих продуктов быстрого пиролиза лигноцеллюлозной биомассы, содержащий благородный металл в количестве не более 5.0 мас. % или содержащий никель, или медь, или железо, или их комбинацию в несульфидной восстановленной форме в количестве не более 40 мас. % и переходные металлы в несульфидной оксидной форме в количестве не более 40 мас. %, носитель - остальное. Описаны три варианта способа приготовления катализатора, предусматривающие нанесение переходных металлов на носитель методом пропитки носителя растворами соединений металлов или одновременным осаждением гидроксидов или карбонатов переходных металлов в присутствии стабилизирующего носителя, или катализатор формируют совместным сплавлением/разложением кристаллогидратов нитратов переходных металлов совместно со стабилизирующими добавками типа нитрата циркония. Также описан процесс гидродеоксигенации кислородосодержащих продуктов быстрого пиролиза биомассы, который осуществляют с использованием вышеописанного катализатора в одну стадию при давлении водорода менее 3,0 МПа, температуре 250÷320°C. Технический результат - катализаторы имеют несульфидированную природу, что позволяет повысить стабильность данных систем в процессах переработки кислородосодержащего органического сырья с низким содержанием серы, а также мягкие условия осуществления процесса. Одним из недостатков вышеописанного процесса является то, что для проведения процесса требуется высокое давление, которое приводит к удорожанию процесса.

Прототипом заявленного изобретения является способ переработки биомассы путем ее газификации с целью получения электрической энергии (RU 2178932 С2, H01M 8/06, C01B 3/00). Процесс проводят в реакторе с вихревым слоем в интервале температур 650÷900°C и давлении 1,5÷5,0 атм с целью получения водородосодержащего неочищенного газа, который используется в производстве электрической энергии. Для очистки газа используются пористые металлы - Fe, Mn, Zn. Процесс осуществляется за счет попеременного восстановления окисленной металлической губки неочищенным газом и последующим окислением восстановленной металлической губки водяным паром. Недостатком способа является создание избыточного давления в реакторе и наличие дорогостоящего пористого металла с достаточно низкой каталитической активностью по сравнению с оксидами и солями соответствующих металлов.

Задачей, решаемой при создании настоящего изобретения, является снижение энергоемкости процесса и увеличение выхода, горючих углеводородов, а также снижение содержания смол при переработке биомассы за счет использования оксидов переходных металлов (Cr, V или Mo, Mn или Co, Ni) в различных массовых соотношениях, импрегнированных в матрицу природных алюмосиликатов (глин). Технический результат изобретения - снижение стоимости и интенсификация процесса газификации отходов биомассы, увеличение выхода горючих углеводородов и синтез газа.

Поставленная задача и указанный технический результат достигается тем, что в способе термокаталитической переработки биомассы с получением синтез-газа процесс проводят в воздушной среде в присутствии катализатора. Содержащиеся в газообразных продуктах смолы, проходя через слой катализатора, разрушаются, что приводит к увеличению выхода горючих газов. Метод не предполагает использование высоких давлений (1,2÷2,0 атм), поскольку это приводит к удорожанию процесса и увеличению выхода жидких продуктов, что является нежелательным. Процесс проводится в среде воздуха с различной объемной скоростью подачи на массу твердого сырья (1,0÷2,5 м3/кг).

Как биомассу используют следующие вещества: бумагу, картон, торф, сено, солома, отходы льнообработки, опилки, навоз, активный ил очистных сооружений и т.п.

Способ иллюстрируется графическими материалами Таблицы 1-6.

Таблица 1. Примеры газификации биомассы (бумага, картон) с использованием катализатора - смесь оксидов хрома и ванадия, нанесенных на природный алюмосиликат при переменных расходе воздуха и отношении массы катализатора к массе сырья.

Таблица 2. Примеры газификации биомассы (опилки) с использованием катализатора - смесь оксидов молибдена и марганца, нанесенных на природный алюмосиликат при переменных расходе воздуха и отношении массы катализатора к массе сырья.

Таблица 3. Примеры газификации биомассы (активный ил очистных сооружений) с использованием катализатора - смесь оксидов кобальта и никеля, нанесенных на природный алюмосиликат при переменных расходе воздуха и отношении массы катализатора к массе сырья.

Таблица 4. Примеры газификации биомассы с использованием катализатора - смесь оксидов хрома и ванадия, нанесенных на природный алюмосиликат при переменных массовых концентрациях оксидов Cr и V.

Таблица 5. Примеры газификации биомассы с использованием катализатора - смесь оксидов молибдена и марганца, нанесенных на природный алюмосиликат при переменных массовых концентрациях оксидов Mo и Mn.

Таблица 6. Примеры газификации биомассы с использованием катализатора - смесь оксидов кобальта и никеля, нанесенных на природный алюмосиликат при переменных массовых концентрациях оксидов Co и Ni.

Способ каталитической газификации биомассы осуществляется следующим образом. Пелеты или гранулы биомассы размером от 10 до 35 мм подвергают окислению при подаче воздуха и давлении 1,2÷2,0 атм. Газификация протекает в реакторе со стационарным слоем при температуре 600÷800°C. Разогрев установки осуществляется за счет энергии сжигания биомассы. Слой катализатора, через который проходят газообразные продукты, находится в интервале температур 500÷550°C. Образующиеся в газификаторе газообразные продукты, проходя через слой катализатора (природные алюмосиликаты с нанесенными на них оксидами Cr (от 1 до 20% масс.) и V (1÷5%), или Mo (1÷10%) и Mn (10÷30%), или Co (5÷25%) и Ni (1÷40%)), претерпевают стадию каталитической термодеструкции, при которой происходит распад смол, увеличивающий теплоценность получаемого газа.

Способ приготовления катализатора предусматривает нанесение переходных металлов на носитель методом пропитки растворами соединений металлов или одновременным осаждением гидрооксидов, или карбонатов переходных металлов в присутствии стабилизирующего носителя, или катализатор формируют совместным сплавлением/разложением кристаллогидратов нитратов переходных металлов на алюмосиликатной матрице природного алюмосиликата (бентонитовая или каолиновая глина).

Биомассу измельчают и газифицируют в воздушной среде при 600÷800°C и давлении 1,2÷2,0 атмосферы. Образующиеся в газификаторе газообразные продукты при температуре 500÷550°C, массовом соотношении катализатора и биомассы 0,01÷0,05 и расходе воздуха 1,0÷2,5 м3 на 1 кг биомассы пропускают через установленную на выходе из газификатора кассету с алюмосиликатным носителем с нанесенной на него в различных соотношениях смесью оксидов переходных металлов Cr (от 1 до 20% масс.) и V (1÷5%), или Mo (1÷10%) и Mn (10÷30%), или Co (5÷25%) и Ni (1÷40%).

Примеры испытаний катализаторов различной природы при изменении технологических параметров приведены в Таблицах 1÷3.

Экспериментально определенное оптимальное соотношение массы катализатора к массе сырья находится в интервале от 0,01 до 0,05, а оптимальный расход воздуха находится в пределах от 1,0 до 2,5 м3/кг биомассы. При выходе вышеуказанных параметров за обозначенные границы происходит существенное снижение теплотворной способности синтез-газа.

Примеры испытаний катализаторов различной природы при переменных массовых концентрациях активных металлов приведены в Таблицах 4÷6.

При выходе за пределы заявленных массовых концентраций оксидов металла на алюмосиликатном носителе технический результат не достигается, так как при снижении концентрации активных металлов ниже заявленного предела уменьшаются теплоты сгорания газов и уменьшается кпд газификации. С увеличением концентрации оксидов металлов выше заявленных пределов происходит увеличение коксуемости каталитической системы и снижается время работы катализатора.

Похожие патенты RU2538966C2

название год авторы номер документа
СПОСОБ ТЕРМОКАТАЛИТИЧЕСКОЙ ПЕРЕРАБОТКИ ПРОМЫШЛЕННЫХ И ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ 2013
  • Луговой Юрий Владимирович
  • Сульман Эсфирь Михайловна
  • Косивцов Юрий Юрьевич
  • Чалов Кирилл Вячеславович
RU2538968C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) И ПРОЦЕСС ГИДРОДЕОКСИГЕНАЦИИ КИСЛОРОДОРГАНИЧЕСКИХ ПРОДУКТОВ БЫСТРОГО ПИРОЛИЗА БИОМАССЫ 2007
  • Яковлев Вадим Анатольевич
  • Хромова Софья Александровна
  • Ермаков Дмитрий Юрьевич
  • Лебедев Максим Юрьевич
  • Кириллов Валерий Александрович
  • Пармон Валентин Николаевич
RU2335340C1
КАТАЛИЗАТОР И ПРОЦЕСС ГИДРОДЕОКСИГЕНАЦИИ КИСЛОРОДОРГАНИЧЕСКИХ ПРОДУКТОВ ПЕРЕРАБОТКИ РАСТИТЕЛЬНОЙ БИОМАССЫ 2010
  • Яковлев Вадим Анатольевич
  • Хромова Софья Александровна
  • Ермаков Дмитрий Юрьевич
  • Пармон Валентин Николаевич
  • Вендербосх Робертус Хендрикус
  • Хирс Херо Жан
  • Ардьянти Агнесс Ретно
RU2440847C1
СПОСОБ УТИЛИЗАЦИИ ПОЛИМЕРНЫХ ОТХОДОВ МЕТОДОМ НИЗКОТЕМПЕРАТУРНОГО КАТАЛИТИЧЕСКОГО ПИРОЛИЗА 2015
  • Сульман Эсфирь Михайловна
  • Косивцов Юрий Юрьевич
  • Луговой Юрий Владимирович
  • Чалов Кирилл Вячеславович
  • Тихонов Борис Борисович
  • Молчанов Владимир Петрович
RU2617213C2
Наноструктурированный катализатор гидродеоксигенации ароматических кислородсодержащих компонентов бионефти 2022
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Иванов Евгений Владимирович
  • Засыпалов Глеб Олегович
  • Прудников Владислав Сергеевич
  • Климовский Владимир Алексеевич
  • Вутолкина Анна Викторовна
  • Демихова Наталия Руслановна
  • Ставицкая Анна Вячеславовна
RU2797423C1
КАТАЛИЗАТОР ГИДРОДЕОКСИГЕНАЦИИ КИСЛОРОДОРГАНИЧЕСКИХ ПРОДУКТОВ ПЕРЕРАБОТКИ РАСТИТЕЛЬНОЙ БИОМАССЫ И ПРОЦЕСС ГИДРОДЕОКСИГЕНАЦИИ С ПРИМЕНЕНИЕМ ЭТОГО КАТАЛИЗАТОРА 2011
  • Кукушкин Роман Геннадьевич
  • Яковлев Вадим Анатольевич
  • Хромова Софья Александровна
  • Селищева Светлана Александровна
  • Ермаков Дмитрий Юрьевич
RU2472584C1
Катализатор деоксигенирования компонентов биомассы в углеводороды и способ его получения 2019
  • Степачёва Антонина Анатольевна
  • Маркова Мария Евгеньевна
  • Филатова Анастасия Евгеньевна
RU2720369C1
СПОСОБ ПРИГОТОВЛЕНИЯ СКЕЛЕТНОГО КАТАЛИЗАТОРА ГИДРОДЕОКСИГЕНАЦИИ ПРОДУКТОВ ПЕРЕРАБОТКИ РАСТИТЕЛЬНОЙ БИОМАССЫ 2013
  • Ермаков Дмитрий Юрьевич
  • Смирнов Андрей Анатольевич
  • Хромова Софья Александровна
  • Яковлев Вадим Анатольевич
RU2534996C1
Катализатор термокаталитической переработки тяжелого и остаточного углеводородного сырья 2016
  • Сульман Эсфирь Михайловна
  • Луговой Юрий Владимирович
  • Чалов Кирилл Вячеславович
  • Тихонов Борис Борисович
  • Долуда Валентин Юрьевич
  • Молчанов Владимир Петрович
RU2632467C1
СПОСОБ ПЕРЕРАБОТКИ БИОМАССЫ В СИНТЕЗ-ГАЗ 2015
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
RU2590565C1

Реферат патента 2015 года СПОСОБ КАТАЛИТИЧЕСКОЙ ГАЗИФИКАЦИИ БИОМАССЫ С ПОЛУЧЕНИЕМ ГАЗООБРАЗНЫХ ТОПЛИВ

Изобретение относится к области использования возобновляемых источников сырья - биомассы. Заявлен способ каталитической газификации биомассы с получением газообразных топлив. Способ содержит измельчение биомассы и ее термическую переработку в воздушной среде при 600÷800°С и давлении 1,2-2,0 атм, каталитическую термодеструкцию газообразных продуктов в присутствии оксидов переходных металлов, способ отличается тем, что каталитическую термодеструкцию осуществляют при температуре 500÷550°С, массовом соотношении катализатора и биомассы 0,01÷0,05 и расходе воздуха 1,0÷2,5 м3 на 1 кг биомассы, при этом в качестве катализатора используют смесь оксидов хрома и ванадия, нанесенных на природный алюмосиликат в количестве 1÷20% масс. и 1÷5% масс. соответственно, или в качестве катализатора используют смесь оксидов молибдена и марганца, нанесенных на природный алюмосиликат в количестве 1÷10% масс. и 10÷30% масс. соответственно, или в качестве катализатора используют смесь оксидов кобальта и никеля, нанесенных на природный алюмосиликат в количестве 5÷25% масс. и 1÷40% масс. соответственно.

Технический результат - увеличение выхода горючих углеводородов, достижение хорошего к.п.д. газификации. 6 табл., 6 пр.

Формула изобретения RU 2 538 966 C2

Способ каталитической газификации биомассы, содержащий измельчение биомассы и ее термическую переработку в воздушной среде при 600÷800°С и давлении 1,2-2,0 атм, каталитическую термодеструкцию газообразных продуктов в присутствии оксидов переходных металлов, отличающийся тем, что каталитическую термодеструкцию осуществляют при температуре 500÷550°С, массовом соотношении катализатора и биомассы 0,01÷0,05 и расходе воздуха 1,0÷2,5 м3 на 1 кг биомассы, при этом в качестве катализатора используют смесь оксидов хрома и ванадия, нанесенных на природный алюмосиликат в количестве 1÷20% масс. и 1÷5% масс. соответственно, или в качестве катализатора используют смесь оксидов молибдена и марганца, нанесенных на природный алюмосиликат в количестве 1÷10% масс. и 10÷30% масс. соответственно, или в качестве катализатора используют смесь оксидов кобальта и никеля, нанесенных на природный алюмосиликат в количестве 5÷25% масс. и 1÷40% масс. соответственно.

Документы, цитированные в отчете о поиске Патент 2015 года RU2538966C2

US 4865625 A, 12.09.1989
СПОСОБ ТЕРМОХИМИЧЕСКОЙ ПЕРЕРАБОТКИ БИОМАССЫ ДЛЯ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА 2010
  • Кондратюк Владимир Александрович
  • Воскобойников Игорь Васильевич
  • Щелоков Вячеслав Михайлович
  • Пашкин Сергей Васильевич
  • Иванова Маргарита Анатольевна
RU2464295C2
US 20120117860 A1, 17.05.2012
US 20060185245 A1, 24.08.2006
Способ синтетического получения органических содержащих кислород соединений 1926
  • М. Пир
  • О. Куппингер
SU9349A1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ИЗ РЕГЕНЕРАТИВНОЙ БИОМАССЫ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА (ВАРИАНТЫ) 1995
  • Йонссен Вольф
RU2178932C2

RU 2 538 966 C2

Авторы

Луговой Юрий Владимирович

Сульман Михаил Геннадьевич

Сульман Эсфирь Михайловна

Молчанов Владимир Петрович

Даты

2015-01-10Публикация

2013-02-14Подача