СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, СОДЕРЖАЩЕГО ЖЕЛЕЗО И АЛЮМИНИЙ, ИЗ ВОДНЫХ РАСТВОРОВ Российский патент 2015 года по МПК B22F9/24 C22B3/44 

Описание патента на изобретение RU2541259C1

Изобретение относится к области порошковой металлургии, а именно к способу получения металлического порошка, содержащего железо и алюминий, из отработанных технологических растворов гальванического или металлургического производства.

Полученный порошок может быть использован для получения интерметаллидов железа и алюминия FeAl и Fe3Al методом искрового плазменного спекания. Материалы на основе интерметаллидов железа и алюминия характеризуются низкой стоимостью, хорошим сопротивлением коррозии и окислению, износу и выступают в качестве альтернативы нержавеющим сталям.

Известен способ изготовления металлического материала, в котором металлические нанокристаллические зерна получены механическим размалыванием или механическим сплавлением порошков компонентов нанокристаллического металлического материала с использованием шаровой мельницы или подобного устройства и обработку порошков формованием и спеканием, таким как прокат в оболочке, искровое плазменное спекание или экструзия, или формование взрывом с получением металлического материала, который имеет высокую твердость, прочность и вязкость (WO 2004/029313, МПК C22C 33/02, 08.04.2004).

Недостаток метода в том, что для получения порошков компонентов необходима операция длительного измельчения. Кроме того, в процессе размалывания происходит загрязнение целевого продукта.

Известен способ электролитического осаждения сплава железо-алюминий (патент РФ №2263727, C25D 3/56, 10.11.2005). Способ включает осаждение из электролита, содержащего кг/м3: хлористый алюминий 50-600, железо хлористое (II) 200-700, хлористый калий (натрий) 80-100, соляную кислоту 0,5-1,5, на переменном асимметричном токе с коэффициентом асимметрии 1,2-6, катодной плотностью тока 30-70 А/дм2, температурой электролита 20-40°C, pH электролита 0,8.

Недостатками способа являются высокие энергозатраты, так как для проведения процесса необходим электрический ток с особой формой сигнала, а также низкая скорость процесса 0,35 мм/ч.

Наиболее близким к предлагаемому изобретению является способ получения порошка железа из водных растворов, включающий восстановление железа дисперсным алюминием, взятым в мольном соотношении железо : алюминий 1:(1,0-2,0) соответственно, промывку и высушивание осадка (патент РФ №2094174, МПК B22F 9/24, 27.10.1997).

Недостаток способа - ограниченная область применения: способ используется только для получения порошка железа.

Задачей изобретения является получение порошка железа и алюминия из водных растворов для синтеза интерметаллидов железа и алюминия.

Технический результат достигается способом получения порошка железа из водных растворов, включающим восстановление ионов железа(III) дисперсным алюминием с размером частиц 70-100 мкм в течение 10 мин при мольном соотношении железо : алюминий 1:(1,5-2,5), затем обработку осадка водным раствором щелочи с pH 14,0-14,5 в течение 5-10 мин, промывку и высушивание осадка.

Решение технической задачи позволяет получить порошок, содержащий железо и алюминий, применяющийся для синтеза интерметаллидов железа и алюминия.

Предложенный способ осуществляют следующим образом.

К водному раствору, содержащему ионы Fe(III), например хлорида железа, или отработанного электролита железнения, или отработанного раствора травления, добавляют дисперсный алюминий чистотой не менее 97% с размером частиц 70-100, взятым в мольном соотношении железо(III) : алюминий 1:(1,5-2,5), и выдерживают в течение 10 мин. За это время происходит полное восстановление металлического железа. Использование фракции алюминиевого порошка с верхним пределом размера выше 100 мкм нецелесообразно ввиду снижения скорости процесса и выхода целевого продукта. Применение же алюминиевого порошка с размером частиц менее 70 мкм приводит к нестабильности протекания процесса, вызванной разными и существенно различающимися скоростями растворения алюминия и, соответственно, снижению мольного соотношения железа и алюминия, а также повышению доли сопряженного процесса выделения водорода.

Полученный осадок отделяют от маточного раствора и обрабатывают водным раствором щелочи с pH 14,0-14,5 в течение 5-10 мин для удаления избытка алюминия. При выходе за нижний предел указанного интервала pH время растворения алюминия существенно возрастает. Кроме того, в данном случае имеет место образование оксигидроксидов алюминия, что в конечном итоге приводит к образованию фазы оксида алюминия и снижает выход интерметаллидов железа и алюминия при спекании. В случае раствора с pH 14,7, выходящего за верхние пределы указанного интервала значений, скорость растворения алюминия растет, что нарушает установление необходимого соотношения железа и алюминия в осадке. При заданных значениях времени выдержки и pH обеспечивается достижение необходимого соотношения между элементными железом и алюминием в синтезированном порошке, позволяющим далее в результате спекания получить интерметаллид Fe3Al.

Далее осадок отделяют, например, магнитной сепарацией и промывают дистиллированной водой и этиловым спиртом, и высушивают.

Предложенный способ поясняется примерами конкретного выполнения.

Пример 1

К 100 см3 раствора травления сталей с концентрацией ионов Fe(III) 60 г/л, HCl 10% масс. (ρ=1,19 г/см3), добавляли 4,05 г дисперсного Al с размером частиц 70-100 мкм, что соответствует мольному соотношению 1:1,5, и выдерживали в течение 10 мин. Полученный осадок отделяли магнитной сепарацией и обрабатывали раствором щелочи с pH 14,5 в течение 5 мин. Далее осадок также отделяли от раствора магнитной сепарацией, промывали дистиллированной водой и этанолом и сушили в вакуумном термошкафу при температуре не ниже 60°C в течение 1 ч. Далее проводили спекание полученного порошка на установке искрового плазменного спекания (SPS-установке) при следующем режиме: температура 1250°C, давление 60 МПа, время выдержки 10 мин. Полученный материал идентифицировали как интерметаллид Fe3Al. Выход фазы интерметаллида составил не менее 98%.

Полученные объекты анализировали на предмет химического и фазового состава с помощью рентгеновского дифрактометра ДРОН-7. Дифрактограммы обрабатывали с помощью многофункционального программного продукта MAUD 1.85. Характерные дифрактограммы образцов приведены на фиг.1. Первая дифрактограмма, характеризуется пиками, характеризующими элементные железо и алюминий, и соответствует порошку, содержащему элементные железо и алюминий и полученному в растворе электрохимическим методом. Вторая дифрактограмма характеризуется узкими пиками, указывающими на присутствие хорошо окристаллизованных фаз интерметаллида и остаточного металла (железа), присутствующих в термически обработанном образце.

Таблица 1 Результаты рентгеновского структурно-фазового анализа образцов Объект Фазовый состав Содержание фаз, % масс. Параметр кристаллической решетки, нм Размер ОКР, нм Микронапряжение Порошок α-Fe 82,3 0,28664 74,4 1,7·10-3 Al 17,7 0,40488 214,7 1,9·10-7 Спеченный образец α-Fe 1,1 0,28728 55,7 8,7·10-5 Fe3Al 98,9 0,58144 61,9 2,4·10-4 Al 0,0 - - -

Согласно данным рентгенофазового анализа, приведенным в таблице 1, полученный порошок представляет собой твердый раствор в α-Fe Al, а спеченный образец состоит преимущественно из Fe3Al. Это свидетельствует о твердофазном процессе образования интерметаллической фазы из элементных металлов.

С помощью универсальной испытательной машины AGS-10kNXShimadzu проведен анализ механических свойств полученного материала: микротвердость HV0,2 составила 544, прочность при испытании на изгиб составила 650 МПа, что соответствует усредненным механическим свойствам нержавеющих сталей.

Примеры 2-11 проводили по аналогии с приведенными в примере 1.

Все примеры конкретного выполнения предлагаемого способа по номерам представлены в таблице 2.

Таблица 2 Результаты экспериментов по получению порошков, содержащих железо и алюминий № п/п Соотношение Fe:Al, моль/моль pH щелочного раствора Время обработки осадка щелочным раствором, мин Содержание Fe3Al после SPS-спекания 1 1:1,5 14,5 5 98,9 2 1:1,5 14,5 10 95,0 3 1:2,0 14,5 5 98,8 4 1:2,5 14,5 5 98,9 5 1:2,0 14,0 10 98,5 6 1:2,0 14,2 7 98,3 7 1:3,0 14,5 10 56,1 8 1:1,0 14,0 5 0,5 9 1:1,5 14,5 15 38,9 10 1:1,5 13,5 5 41,2 11 1:1,5 14,7 5 35,1

Очевидно, выход за нижний предел диапазона мольного соотношения железо : алюминий (пример 8) не позволяет получить осадок с содержанием элементных металлов, соответствующих стехиометрическому составу интерметаллидов железа и алюминия.

Выход за верхний предел диапазона значений (пример 7) также не позволяет сохранить стехиометрическое соотношение указанных металлов при искровом плазменном спекании полученного порошка.

Таким образом, предлагаемый способ позволяет получать порошок, содержащий железо и алюминий, применяющийся для синтеза интерметаллидов железа и алюминия.

Похожие патенты RU2541259C1

название год авторы номер документа
Способ получения интерметаллидных композиционных материалов на основе порошковых систем Fe-A1 2018
  • Сурков Вячеслав Анатольевич
  • Абдуллин Ильдар Шаукатович
  • Ахатов Марат Фарихович
  • Шарафеев Рустем Фаридович
  • Сагбиев Ильгизар Раффакович
RU2686194C1
Способ получения замещенного марганцем гексаферрита бария 2023
  • Гафарова Ксения Петровна
  • Стариков Андрей Юрьевич
  • Шерстюк Дарья Петровна
  • Пунда Александр Юрьевич
RU2814967C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ЖЕЛЕЗА ИЗ ВОДНЫХ РАСТВОРОВ 1996
  • Дресвянников А.Ф.
  • Дресвянников Ф.Н.
RU2094174C1
Способ получения частиц ферритов 2019
  • Лысенко Сергей Николаевич
  • Якушева Дина Эдуардовна
  • Астафьева Светлана Асылхановна
RU2725231C1
СПОСОБ ИЗВЛЕЧЕНИЯ НИКЕЛЯ ИЗ ВОДНЫХ РАСТВОРОВ В ВИДЕ МЕТАЛЛИЧЕСКОГО ПОРОШКА 1998
  • Дресвянников А.Ф.
  • Фомин А.М.
RU2143960C1
СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА ДЛЯ ОЧИСТКИ ВОДЫ 2009
  • Дресвянников Александр Федорович
  • Сорокина Ирина Демьяновна
RU2418746C1
КАТАЛИЗАТОР И СПОСОБ УГЛЕКИСЛОТНОЙ КОНВЕРСИИ ЛЕГКИХ УГЛЕВОДОРОДОВ 2007
  • Касацкий Николай Григорьевич
  • Найбороденко Юрий Семенович
  • Китлер Владимир Давыдович
  • Аркатова Лариса Александровна
  • Курина Лариса Николаевна
  • Галактионова Любовь Викторовна
  • Голобоков Николай Николаевич
RU2351392C1
СЛОИСТЫЙ ГИДРОКСИД СО СТРУКТУРОЙ ГИДРОТАЛЬКИТА, СОДЕРЖАЩИЙ НИКЕЛЬ В СТЕПЕНИ ОКИСЛЕНИЯ +3, И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2013
  • Лебедева Ольга Евгеньевна
  • Рыльцова Ирина Геннадьевна
  • Саенко Роман Николаевич
RU2540402C1
СПОСОБ ИЗВЛЕЧЕНИЯ ОЛОВА ИЗ ВОДНЫХ РАСТВОРОВ 1996
  • Дресвянников А.Ф.
  • Григорьева И.О.
  • Цивунин В.С.
RU2096501C1
СПОСОБ ИЗВЛЕЧЕНИЯ ЦВЕТНЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ ИХ СОЛЕЙ 2007
  • Угрюмов Анатолий Ильич
RU2373296C2

Иллюстрации к изобретению RU 2 541 259 C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, СОДЕРЖАЩЕГО ЖЕЛЕЗО И АЛЮМИНИЙ, ИЗ ВОДНЫХ РАСТВОРОВ

Изобретение относится к области порошковой металлургии, а именно к способу получения порошка, содержащего элементные железо и алюминий, из отработанных технологических растворов гальванического или металлургического производства. К водному раствору, содержащему ионы Fe (III), например хлорида железа или отработанного электролита железнения или отработанного раствора травления стали, добавляют дисперсный алюминий с размером частиц 70-100 мкм в мольном соотношении железо : алюминий 1:(1,5-2,5) и выдерживают в течение 10 мин. Осадок отделяют от маточного раствора, например, магнитной сепарацией и обрабатывают раствором щелочи с pH 14,0-14,5 в течение 5-10 мин. Техническим результатом является получение порошка, содержащего железо и алюминий, применяющегося для синтеза интерметаллидов железа и алюминия. 1 ил., 2 табл., 11 пр.

Формула изобретения RU 2 541 259 C1

Способ получения порошка, содержащего железо и алюминий, из водных растворов, содержащих ионы железа (III), включающий восстановление ионов железа (III) добавлением дисперсного алюминия, промывку и высушивание полученного осадка, при этом восстановление ионов железа (III) проводят дисперсным алюминием с размером частиц 70-100 мкм в течение 10 мин при мольном соотношении железо : алюминий, равном 1:(1,5-2,5), с получением осадка, который обрабатывают водным раствором щелочи с pH 14,0-14,5 в течение 5-10 мин.

Документы, цитированные в отчете о поиске Патент 2015 года RU2541259C1

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ЖЕЛЕЗА ИЗ ВОДНЫХ РАСТВОРОВ 1996
  • Дресвянников А.Ф.
  • Дресвянников Ф.Н.
RU2094174C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ТВЕРДОГО РАСТВОРА ЖЕЛЕЗО-НИКЕЛЬ 2012
  • Захаров Юрий Александрович
  • Попова Анна Николаевна
RU2486033C1
RU 2008150982 А, 27.06.2010
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРНЫХ МЕТАЛЛИЧЕСКИХ ЧАСТИЦ 2008
  • Герасименя Валерий Павлович
  • Клыков Михаил Александрович
  • Захаров Сергей Викторович
  • Николотов Владимир Викторович
RU2394668C1
KR 20010107320 A, 07.12.2001
US 4214893 A, 29.07.1980
US 3966510 A, 29.06.1976
ПЫЛЕСОС 0
  • В. П. Глузберг
SU370939A1

RU 2 541 259 C1

Авторы

Дресвянников Александр Федорович

Колпаков Михаил Евгеньевич

Бурганова Луиза Ринатовна

Даты

2015-02-10Публикация

2013-11-07Подача