Изобретение относится к области неразрушающего контроля, а именно к технологии возбуждения акустических колебаний электромагнитно-акустическим (ЭМА) методом.
Известен способ возбуждения акустических колебаний ЭМА-методом, реализованный конструкцией (ЭМА) преобразователя (патент на полезную модель РФ №31305, опубл. 27 июля 2003), в котором излучатель и приемник пространственно разделены, что дает значительные преимущества, т.к. при этом резко повышается отношение сигнал/помеха на входе приемного устройства, а это, в свою очередь, позволяет осуществлять контроль изделий эхо-методом с шероховатой и корродированной поверхностями, несмотря на то, что величина принимаемого сигнала при этом невелика.
Наиболее близким к предлагаемому изобретению является способ возбуждения акустических волн в электропроводящих материалах (патент РФ №2314880, опубл. 20.01.2008), при котором для достижения максимальной эффективности определенным образом выбирается отношение пространственной частоты к частоте возбуждения.
Обоим этим способам присущи недостатки, общие для способов возбуждения акустических колебаний ЭМА-методом, это низкий коэффициент преобразования энергии, для нержавеющей стали он составляет приблизительно 10-5. Для слабопроводящих материалов, таких как графит и углепластики, он еще ниже. При втором способе, принятом за прототип, эффективность выше, но тем не менее остается недостаточной высокой, что не обеспечивает контроль в некоторых случаях: контроль слабопроводящих материалов, материалов с высокой шероховатостью и т.д.
Изобретением решается задача повышения эффективности возбуждения акустических колебаний бесконтактным электромагнитно-акустическим методом, используя явление ЭМА-резонанса.
Для достижения названного технического результата в предлагаемом способе частота возбуждения выбирается из условий равенства электромагнитной и акустической волн в металле, а фаза возбуждаемой электромагнитной волны регулируется и настраивается оптимальным образом по максимуму сигнала, добиваясь такого распределения пространственной силы, при котором оно будет совпадать с пространственным распределением акустической волны.
Структурная схема для осуществления предлагаемого способа приведена на рис.1. Задающий генератор 1 вырабатывает синусоидальные колебания, которые через фазовращатель 2 поступают на индуктор 3 электромагнитно-акустического преобразователя (ЭМАП). Конструкция ЭМАП выполнена с разделенными индуктором 3 и приемным элементом 5. ЭМАП возбуждает акустические колебания, которые распространяются в толщу объекта возбуждения, отражаются от противоположной стенки и возвращаются к исходной границе, связанной с ЭМАП. В результате электромагнитно-акустического преобразования акустические колебания преобразуются в вихревые токи, электромагнитное поле которых воспринимается приемным элементом 5 ЭМАП, индуцируя ЭДС в катушке приемного элемента. Усиленный сигнал поступает на анализатор 7 амплитуды и фазы, а затем с ее выхода поступает на фазовращатель 2. Задачей устройства фазовращателя является получение максимальной эффективности ЭМА преобразования, а следовательно, и максимума сигнала.
Отличительные признаки предложенного способа заключаются в использовании явления электромагнитно-акустического (ЭМА) резонанса. Как известно, в акустическом контроле используют довольно широкий диапазон частот: от 50 Гц до 50 МГц. При конструировании ЭМА-приборов частоту выбирают из различных соображений: максимальной эффективности ЭМА-преобразования, основываясь на математических расчетах процессов преобразования полей, оптимальной диаграммы направленности, наилучших условий выявляемости дефектов. При возбуждении предлагаемым способом частота выбирается исходя из условий равенства длин акустической и электромагнитной волн. Например, скорость распространения электромагнитной волны в твердом теле со сравнительно высокой электропроводностью определяется по формуле:
В приведенной формуле:
µ0 - магнитная проницаемость вакуума, µ0=4π·10-7·Н/m;
µ - относительная магнитная проницаемость;
σ - электропроводность S/m;
ω - циклическая частота.
Под материалами со сравнительно высокой электропроводностью понимаются такие, в которых токи проводимости значительно (как правило, на два порядка и более) превышают токи смещения. Такое условие выполняется не только для всех металлов, но также для углепластиков, графита и многих полупроводников. Зная скорость распространения электромагнитной волны в твердом теле, нетрудно определить и ее длину:
где:
Данный способ представляет повышенный интерес для контроля материалов с невысокой электропроводностью. По причине низкой электропроводности длина электромагнитной волны оказывается равной длине акустической волны при сравнительно невысокой частоте. Предлагаемый способ можно использовать и при контроле материалов с высокой электропроводностью, но при этом частоты получаются достаточно высокими, какие редко используются в дефектоскопии. Так, например, при контроле алюминия оптимальная частота возбуждения для достижения явления ЭМА-резонанса составит около 80-ти МГц. В тоже время для контроля нержавеющей стали частота составляет всего 2 МГц. Весьма перспективной представляется реализация метода для контроля слабопроводящих материалов, например углепластиков, графита. Так при контроле углепластиков диапазон частот в зависимости от электропроводности может изменяться от 10 кГц до 80 кГц, для графита - 250 кГц. Очевидно, что при снижении электропроводности будет снижаться и эффективность возбуждения акустических колебаний, но учитывая высокую добротность при электромагнитно-акустическом резонансе, можно получить достаточно высокую величину смещений узлов кристаллической решетки.
Максимальную эффективность данного способа можно реализовать при непрерывной работе задающего генератора и, следовательно, непрерывном возбуждении акустических колебаний. Образно говоря, в этом случае кристаллическая решетка непрерывно раскачивается в соответствии со своей собственной частотой (электромагнитно-акустический резонанс), и амплитуда колебаний при этом может достичь достаточно высокой величины. Однако предлагаемый способ резонансного возбуждения дает преимущества при работе генератора в квазиимпульсном и даже в чисто импульсном режиме. В этом случае в схему необходимо дополнительно ввести узел 8 (рис.2) синхронизатора для управления работой задающего генератора.
Так как в данном случае мы имеем дело с распределенной колебательной системой, недостаточно добиться только совпадения частот, необходимо еще добиться правильного пространственного распределения вынуждающей силы. Резонанс наступает, если пространственное распределение внешней силы повторяет форму собственной функции, которой в нашем случае является форма кристаллической решетки. Для этой цели в устройстве служит фазовращатель 2.
Оценивая возможности предложенного способа нельзя забывать, что электромагнитная волна быстро затухает, и нельзя сказать, что она будет действовать по длине всего периода колебаний кристаллической решетки. Сравнительное пространственное расположение акустической и электромагнитной волны проиллюстрировано на графике, представленном на рис.3. Как видно, электромагнитная волна эффективно действует только приблизительно на 1/8 от полной длины волны, но тем не менее очевидно, что и это будет давать значительный эффект, т.к. электромагнитно-акустический резонанс обладает высокой добротностью.
название | год | авторы | номер документа |
---|---|---|---|
МАГНИТНАЯ СИСТЕМА ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ | 2007 |
|
RU2350943C1 |
ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2007 |
|
RU2343475C1 |
Способ определения размеров зерна в листовом металлопрокате | 2022 |
|
RU2782966C1 |
ЭЛЕКТРОМАГНИТНЫЕ АКУСТИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ | 2003 |
|
RU2298786C2 |
Устройство электромагнитно-акустического контроля рельсов | 2017 |
|
RU2653663C1 |
СПОСОБ БИФАКТОРНОГО ВОЗБУЖДЕНИЯ ФЕРРОЗОНДОВ И УСТРОЙСТВО МОДУЛЯТОРА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2022 |
|
RU2809738C1 |
Электромагнитно-акустический преобразователь для ультразвукового контроля | 2016 |
|
RU2649636C1 |
АНТЕННА ЭЛЕКТРОМАГНИТНЫХ СОЛИТОНОВ | 2002 |
|
RU2208273C1 |
ЭЛЕКТРОМАГНИТНЫЙ АКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2004 |
|
RU2345356C2 |
УЛЬТРАЗВУКОВОЙ ТОЛЩИНОМЕР | 2001 |
|
RU2185600C1 |
Изобретение относится к измерительной технике, представляет собой способ возбуждения акустических колебаний электромагнитно-акустическим (ЭМА) методом с использованием явления ЭМА-резонанса и может применяться при неразрушающем контроле, в частности, слабопроводящих материалов. Способ заключается в том, что в верхнем слое контролируемого изделия создают вихревые токи и инициируют возникновение и распространение акустических колебаний, при этом частоту возбуждающего поля выбирают из условий равенства длин волн электромагнитного и акустического полей, а фазу подстраивают до совпадения пространственного распределения вынуждающей силы с деформациями кристаллической решетки. Техническим результатом является повышение эффективности возбуждения акустических колебаний электромагнитно-акустическим методом. 1 з.п. ф-лы, 3 ил.
1. Способ возбуждения акустических колебаний в электропроводящих материалах, заключающийся в том, что в верхнем слое контролируемого изделия создают вихревые токи, в результате взаимодействия которых с постоянным магнитным полем возникает сила, инициирующая возникновение и распространение акустических колебаний, отличающийся тем, что частота выбирается из условий равенства электромагнитной и акустической волны в материале, а фаза возбуждаемой электромагнитной волны регулируется и настраивается оптимальным образом по максимуму сигнала, добиваясь такого распределения пространственной силы, при котором оно будет совпадать с пространственным распределением акустической волны.
2. Способ по п.1, отличающийся тем, что в схему дополнительно введен узел синхронизатора для обеспечения работы в импульсном и квазиимпульсном режимах.
СПОСОБ ВОЗБУЖДЕНИЯ АКУСТИЧЕСКИХ КОЛЕБАНИЙ В ЭЛЕКТРОПРОВОДЯЩИХ МАТЕРИАЛАХ | 2006 |
|
RU2314880C1 |
Измерительное устройство | 1959 |
|
SU133603A1 |
Способ возбуждения упругих волн в электропроводящих материалах | 1977 |
|
SU632400A1 |
US 8037765 B2, 18.10.2011 | |||
US 20110004091 A1, 06.01.2011 |
Авторы
Даты
2015-04-27—Публикация
2014-02-25—Подача