Изобретение относится к области материаловедения, в частности, к способу получения поликристаллических боратов, которые могут найти применение в качестве катализаторов и твердых электролитов (ТЭЛ).
Известны способы получения двойного бората лития и цинка состава LiZnBO3, кристаллизующегося в моноклинной сингонии с пр.гр. С2/с.
(1. Belkebir A., Tarte P., Rulmont A., Gilbert, В. Synthesis, structural and vibrational analysis of LiMBO3 orthoborates (M=Mg, Co, Zn) // New Journal of Chemistry. 1996. 20 (3), P.311-316.
2. Tsuyumoto I., Kihara A. Synthesis, characterization and charge-discharge properties of layer-structure lithium zink borate, LiZnBO3 // Materials Science and Applications. 2013. Vol.4. P.246-249).
Недостатком этих способов получения LiZnBO3 является высокая температура синтеза (1000°С).
Наиболее близким к заявляемому изобретению является способ получения бората LiZnBO3 при нагревании стехиометрической смеси LiBO2·8Н2О и ZnO при 600°С в течение одного месяца с несколькими промежуточными перетираниями.
(3. Chen X., Yang С., Chang X., Zang H., Xiao W. Syntheses and characterization of two alkali-metal zinc borates, α-LiZnBO3 and Li0.48Na0.52ZnBO3 // Solid State Sciences. 2009. Vol.11. P.2086-2092).
Однако известный способ имеет следующие недостатки. Во-первых, значительная продолжительность синтеза (один календарный месяц). Во-вторых, необходимость использования промышленного реактива (LiBO2·8H2O).
Цель изобретения - сокращение продолжительности синтеза путем использования доступных и недорогих реактивов.
Поставленная цель достигается тем, что в качестве исходных реагентов при получении LiZnBO3 используют смесь LiBO2 (37,80 мас.%), ZnO (61,79 мас.%), Н3ВО3 (0,41 мас.%), которую подвергают многоступенчатой термообработке на воздухе при подъеме температуры от 350°С до 700°С в течение 260 часов. Борат лития LiBO2 предварительно получают из смеси карбоната лития Li2CO3 и борной кислоты Н3ВО3, взятых в молярном соотношении 1:1. Полученную смесь подвергают термической обработке при 650°С в течение 50 часов.
Данное изобретение иллюстрируется следующим примером.
Пример. Смесь из Li2CO3 навеской 4,0645 г (33,3 мол. %) и Н3ВО3 навеской 6,7980 г (66,7 мол. %) тщательно растирали в агатовой ступке. Полученную смесь отжигали в платиновом тигле на воздухе при температуре 350°С, затем 500°С и 650°С в течение 10, 20 и 20 часов, соответственно. Смесь из LiBO2 навеской 1,4940 г (37,80 мас.%), ZnO навеской 2,4420 г (61,79 мас.%) и Н3ВО3 - 0,0160 г (0,41 мас.%) тщательно растирали в агатовой ступке. Полученную смесь отжигали в платиновом тигле на воздухе при 350°С, затем 650°С и 700°С в течение 10, 50 и 200 часов, соответственно (сравнение режимов синтеза представлено в табл.1).
Исходными веществами служили: карбонат лития Li2CO3 марки «х.ч.», борная кислота Н3ВО3 марки «х.ч.», оксид цинка ZnO марки «х.ч.». Предварительно карбонат лития Li2CO3 прокаливали при 400°С, а оксид цинка ZnO при 500°С в течение 5 часов до постоянного веса.
Полноту протекания реакции контролировали рентгенографически [порошковый автоматический дифрактометр D8 Advance Bruker AXS (Cu Kα-излучение, графитовый монохроматор)]. Рентгенограмма полученного соединения LiZnBO3 приведена на рисунке. Параметры элементарной ячейки соединения LiZnBO3 (пр.гр. С2/с) уточняли методом наименьших квадратов (МНК) с использованием данных, полученных с монокристалла [3]. Кристаллографические характеристики полученного соединения представлены в табл.2.
Краткое описание чертежей
Фиг.
Рентгенограммы LiZnBO3 (а) - наши данные; (б) - данные [3].
Использование предлагаемого способа получения двойного бората лития и цинка обеспечивает по сравнению с существующими способами следующие преимущества.
В результате использования смеси исходных компонентов бората лития LiBO2 - 37,80 мас.%, оксида цинка ZnO - 61,79 мас.% и борной кислоты Н3ВО3 - 0,41 мас.% получен двойной борат лития и цинка LiZnBO3, который синтезируется при меньшей продолжительности отжига.
Использование заявляемого изобретения позволяет получать двойной борат LiZnBO3, который может быть использован в качестве катализатора или твердого электролита.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения бората α-LiCdBO | 2019 |
|
RU2729805C1 |
Способ получения нелинейно-оптического материала | 2022 |
|
RU2795764C1 |
CПОСОБ ПОЛУЧЕНИЯ ТЕТРАБОРАТА КАДМИЯ CdBO | 2014 |
|
RU2579390C1 |
СПОСОБ ПОЛУЧЕНИЯ БОРАТА БАРИЯ И ИНДИЯ | 2000 |
|
RU2170214C1 |
Способ получения оптического полупроводникового материала на основе нанодисперсного оксида кадмия, допированного литием | 2021 |
|
RU2754888C1 |
Фотолюминесцентный материал на основе сложного бората | 2019 |
|
RU2723028C1 |
Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения | 2020 |
|
RU2759536C1 |
СЛОЖНЫЙ ГАФНАТ ЛИТИЯ-ЛАНТАНА В КАЧЕСТВЕ ЛЮМИНЕСЦЕНТНОГО МАТЕРИАЛА ДЛЯ ПРЕОБРАЗОВАНИЯ МОНОХРОМАТИЧЕСКОГО ИЗЛУЧЕНИЯ ЛАЗЕРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2015 |
|
RU2606229C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО ПОРОШКА ЛИТИЙ-ЦИНК-МАРГАНЦЕВОГО ФЕРРИТА | 2021 |
|
RU2768724C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ КАТОДНЫХ МАТЕРИАЛОВ LiFeMPO/C СО СТРУКТУРОЙ ОЛИВИНА | 2010 |
|
RU2444815C1 |
Изобретение относится к области материаловедения, в частности, к способу получения поликристаллических боратов, которые могут найти применение в качестве катализаторов и твердых электролитов. Двойной борат лития и цинка LiZnBO3 получают путем термической обработки, при этом в качестве исходных компонентов используют смесь из предварительно полученного LiBO2 (37,80 мас.%), ZnO (61,79 мас.%), Н3ВО3 (0,41 мас.%) при ступенчатом подъеме температуры от 350°С до 700°С течение 260 часов. Борат лития LiBO2 предварительно получают из смеси Li2CO3 и Н3ВО3, взятых в молярном соотношении 1:1, которую отжигают на воздухе при 650°С в течение 50 часов. Технический результат - сокращение продолжительности синтеза путем использования доступных и недорогих реактивов. 1 ил., 2 табл., 1 пр.
Способ получения двойного бората лития и цинка LiZnBO3 путем термической обработки, отличающийся тем, что в качестве исходных компонентов используют смесь из предварительно полученного LiBO2 (37,80 мас.%), ZnO (61,79 мас.%), Н3ВО3 (0,41 мас.%) при ступенчатом подъеме температуры от 350°С до 700°С течение 260 часов.
CHEN X | |||
et al, Syntheses and characterization of two alkali-metal zinc borates, α-LiZnBO and Li NaZnBO, "Solid State Sciences", 2009, vol.11, no.12, p.p.2086-2092 | |||
TSUYUMOTO I | |||
et al, Synthesis, characterization and charge-discharge properties of layer-structure lithium zinc borate, |
Авторы
Даты
2015-05-10—Публикация
2013-12-30—Подача