СПОСОБ ОБНАРУЖЕНИЯ ТРАЕКТОРИИ МАНЕВРИРУЮЩЕГО ОБЪЕКТА Российский патент 2015 года по МПК G01S13/06 

Описание патента на изобретение RU2553459C1

Предлагаемое изобретение относится к радиолокации и может быть использовано в радиолокационной технике для обнаружения траектории маневрирующего объекта.

В настоящее время все большее распространение получают алгоритмы, в которых для обнаружения траектории объекта, в области значений параметров траектории маневрирующего объекта формируют смешанную апостериорную плотность распределения вероятностей (САПРВ), с использованием всех отсчетов амплитудных спектров по всем каналам системы обнаружения.

Известен способ обнаружения (захвата) траектории объекта [1] (аналог), заключающийся в излучении зондирующего сигнала, приеме отраженного сигнала, формировании САПРВ в области дальности, скорости, ускорения между обзорами, амплитуды. В качестве входных данных алгоритма используются отсчеты амплитудного спектра сигнала в каналах по дальности. Недостатком данного способа является то, что не учитывается влияние радиального ускорения объекта на амплитудный спектр сигнала, которое приводит к «размытию» спектра сигнала по каналам скорости. В результате оценки, формируемые при использовании таких входных данных, имеют либо недостаточную точность, либо вообще становится невозможным обнаружение. Также недостатком является предположение о линейном изменении параметров, входящих в вектор состояния захватываемой траектории, что при современном уровне развития летательных аппаратов не позволяет производить обнаружение траектории с достаточной вероятностью и скоростью.

В качестве прототипа выбран известный способ обнаружения (захвата) траектории маневрирующего объекта [2], заключающийся в излучении зондирующего сигнала, приеме отраженного сигнала, формировании САПРВ в области оцениваемых параметров. В качестве входных данных алгоритма так же, как и в аналоге используются отсчеты амплитудного спектра сигнала в каналах по дальности. Ускорение объекта оценивается по изменению радиальной скорости между наблюдениями. Недостатком данного способа является чрезмерно большой объем вычислительных операций, так как в вектор состояния включены параметры, характеризующие степень «размытия» спектра во входных данных.

Техническим результатом предлагаемого изобретения является повышение вероятности обнаружения траектории маневрирующего объекта.

Технический результат предлагаемого изобретения достигается за счет введения ускорения в вектор измеряемых параметров сигнала, отраженного от маневрирующего объекта. Технический результат достигается за счет введения многоканальности по ускорению, обеспечивающей компенсацию межпериодных фазовых набегов, вызванных ускоренным движением объекта, и оценку скорости изменения доплеровской составляющей.

Вектор состояния xk захватываемой траектории в k-й момент времени определяется соотношением:

xk=f(xk-1,vk-1).

где f(•) - нелинейная функция, связывающая вектор состояния на k-м и (k-1)-м шагах;

v - вектор шумов процесса на (k-1)-м шаге.

В отличие от способа-прототипа в вектор состояния xk, кроме амплитуды I сигнала и межпериодного набега фазы φC, включается скорость изменения (соответствующая ускорению объекта) межпериодного набега фазы :

.

Межпериодный набег фазы φC связан с радиальной скоростью соотношением:

,

где Vr - радиальная скорость;

λ - длина волны излучающего сигнала;

Tn - период повторения импульсов.

Вектор zk измерений на k-м шаге связан с вектором состояния соотношением:

zk=h(xk,nk),

где h(•) - функция, связывающая вектор xk состояния с вектором zk измерений;

nk - вектор шумов наблюдений на k-м шаге с дисперсией .

Рекуррентный алгоритм обнаружения малоразмерного объекта состоит в вычислении на каждом шаге САПРВ с помощью формулы Байеса:

,

где xk - вектор состояния на k-й момент времени;

zk - измерения на k-м шаге;

p(zk|xk, Ek=1) - функция правдоподобия;

Ek - индикатор существования объекта (Ek=1 - объект существует, Ek=0 - объект отсутствует);

- нормирующий множитель, определяемый по правилу:

,

- априорное распределение вектора состояния x на k-м шаге, имеющее вид:

p(xk|xk-1) - переходная плотность распределения вероятностей вектора состояния между k-м и k-1-м шагами.

САПРВ имеет вид:

где Pd, Pb - априорные вероятности пропадания и появления объекта соответственно;

pb(xk) - априорная плотность распределения элементов вектора состояния xk на k-м шаге.

Первое слагаемое в данном выражении характеризует вероятность существования объекта на k-1 и k-м шагах, второе - вероятность появления на k-м шаге. САПРВ вычисляется на множестве точек, называемых в технической литературе парциальными фильтрами. Каждый i-й парциальный фильтр характеризуется вектором состояния, весом (значением САПРВ) и индикатором состояния соответственно:

Для фильтров с , экстраполированные значения вектора состояния определяются как

,

где F - переходная матрица.

При линейном изменении вектора состояния матрица F имеет вид:

где T - период между наблюдениями.

Амплитуда I сигнала описывается односвязным марковским процессом. Для фильтров с , значения вектора состояния формируют исходя из априорных вероятностей межпериодного набега фазы сигнала, скорости изменения межпериодного набега фазы сигнала и амплитуды принятого сигнала.

Поскольку предлагаемая модификация известного алгоритма заключается в том, что в вектор состояния , а соответственно и в вектор измерений zk, вводится информация о радиальном ускорении объекта, то на основе составляющих вектора состояния формируется вектор ожидаемого сигнала в p-м канале по скорости на основе вектора состояния i-го парциального фильтра:

,

где N - количество импульсов в пачке;

j - мнимая единица.

После вычисления оценивается вероятность Pe обнаружения траектории объекта как отношение количества парциальных фильтров, для которых , , к общему количеству Npf фильтров:

,

где ∑ - знак суммы.

Траектория считается обнаруженной, если Pe превысило пороговое значение вероятности обнаружения траектории, которое вычисляется на основании критерия Неймана-Пирсона.

Следующие новые признаки заявляемого способа обладают существенными отличиями от способа-прототипа:

- компенсация радиального ускорения объекта во входных данных;

- включение в вектор измерений радиального ускорения объекта.

Оценка эффективности предлагаемого способа обнаружения траектории маневрирующего объекта проведена методом имитационного моделирования. На фиг.1 показаны: кривая 1 - вероятность обнаружения траектории объекта Pe от числа n наблюдений для предлагаемого способа; кривая 2 - вероятность обнаружения траектории объекта Pe от числа n наблюдений для способа прототипа. Число наблюдений n=60, при этом объект появился на 20-м наблюдении и пропал на 50-м наблюдении. Отношение сигнал-шум q=-4 дБ. Дополнительный межпериодный набег фазы, вызванный ускорением объекта 0,007 π.

Построение обнаружения траектории маневрирующего объекта для предлагаемого способа проведено методом имитационного моделирования при следующих параметрах: число парциальных фильтров Npf=10000; число N спектральных и временных отсчетов N=64; число каналов по ускорению M=20; вероятности Pd=0,01, Pb=0,1; априорная вероятность наличия траектории объекта 0,1. За время T наблюдения спектр радиосигнала, отраженного от маневрирующего объекта, занимает 11 частотных каналов. Параметры фильтров Калмана для парциальных фильтров Ek-1=1, Ek=1: СКО шума процесса для межпериодного набега фазы 10-4 π рад при скорости изменения межпериодного набега фазы 0,1 π рад/с и амплитуде 0,001.

Анализ данных результатов показывает, что при практической реализации заявляемый способ по сравнению со способом-прототипом позволяет повысить вероятность обнаружения траектории маневрирующего объекта на 0,4.

Техническая реализация заявляемого способа возможна на основе устройства, структурная схема которого изображена на фиг.2. Устройство состоит из буферного регистра 1, блока многоканальных фазовращателей 2, блоков быстрого преобразования Фурье (БПФ) 3, блоков вычисления модулей отсчетов БПФ 4, накопителя 5, порогового устройства 6.

Работу устройства можно описать следующим образом. Сигнал, отраженный от маневрирующего объекта, после преобразований в каскадах приемника и аналого-цифрового преобразования поступает на входы устройства, реализующего заявляемый способ. Квадратурные составляющие на входе устройства в одном элементе разрешения по дальности на k-м шаге описываются последовательностью комплексных величин:

,

где φ0 - случайная начальная фаза отраженного сигнала;

A - амплитуда принятого сигнала.

После записи и последующего считывания из буферного регистра 1 отсчеты sk поступают на входы M многоканальных фазовращателей 2, осуществляющих преобразование отсчетов в соответствии с алгоритмом:

,

где - ширина канала по ускорению;

m=0…M-1.

Затем полученные отсчеты последовательно проходят обработку в блоках 3 и 4, в результате чего на выходах блоков 4 получаются отсчеты

zk=|C(xk,nk|,

где C - оператор преобразования Фурье.

Векторные отсчеты zk амплитудных спектров на k-м шаге:

.

Затем полученные отсчеты поступают в накопитель 5, где происходит оценка вероятности Pe обнаружения траектории по описанному выше правилу. Полученные оценки поступают на пороговое устройство 6. По результатам сравнения принимается решение об обнаружении или необнаружении траектории объекта.

Список литературы

1. Ristic В., Arulampalam S., Gordon N. Beyond the Kalman Filter. Particle Filters for Tracking Applica-tions. - Boston: Artech House. - 2004. - 302 p.

2. Zhaoping Wu, Tao Su, Radar Target Detect using Particle Filter // Radar Conference, 2010 IEEE. - 2010. - pp.955-958.

Похожие патенты RU2553459C1

название год авторы номер документа
СПОСОБ ОБНАРУЖЕНИЯ ДВИЖУЩЕЙСЯ ЦЕЛИ С РАЗЛИЧЕНИЕМ СКОРОСТНЫХ И МАНЕВРЕННЫХ ХАРАКТЕРИСТИК 2015
  • Шаталов Александр Андреевич
  • Ястребков Александр Борисович
  • Самотонин Дмитрий Николаевич
  • Заборовский Игорь Станиславович
  • Шаталова Валентина Александровна
RU2619056C2
СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛОВ, ОТРАЖЕННЫХ ОТ МАНЕВРИРУЮЩЕЙ ЦЕЛИ 2004
  • Кошелев Виталий Иванович
  • Белокуров Владимир Александрович
RU2282873C1
СПОСОБ АДАПТИВНОЙ НАСТРОЙКИ КАНАЛОВ УСКОРЕНИЯ В МНОГОКАНАЛЬНОМ ОБНАРУЖИТЕЛЕ МАНЕВРИРУЮЩЕЙ ЦЕЛИ 2013
  • Белокуров Владимир Александрович
  • Козлов Дмитрий Николаевич
  • Кошелев Виталий Иванович
RU2542347C1
Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех 2020
  • Филонов Андрей Александрович
  • Тезиков Андрей Николаевич
  • Скрынников Андрей Александрович
  • Болдинов Виктор Александрович
  • Федотов Александр Юрьевич
  • Николаев Александр Борисович
  • Хлопков Михаил Игоревич
  • Плаксов Роман Алексеевич
  • Попов Антон Олегович
RU2764781C1
Способ сопровождения крылатой ракеты при огибании рельефа местности в различных тактических ситуациях 2021
  • Филонов Андрей Александрович
  • Тезиков Андрей Николаевич
  • Скрынников Андрей Александрович
  • Болдинов Виктор Александрович
  • Федотов Александр Юрьевич
  • Белобородов Андрей Валентинович
  • Хлопков Михаил Игоревич
  • Плаксов Роман Алексеевич
  • Попов Антон Олегович
RU2760951C1
ОДНОПОЗИЦИОННЫЙ ПАССИВНЫЙ РАДИОЭЛЕКТРОННЫЙ КОМПЛЕКС ДЛЯ ОПРЕДЕЛЕНИЯ ГОРИЗОНТАЛЬНЫХ КООРДИНАТ, ЭЛЕМЕНТОВ ДВИЖЕНИЯ ЦЕЛИ И КОЭФФИЦИЕНТА КИЛОМЕТРИЧЕСКОГО ЗАТУХАНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ЦЕЛИ 2014
  • Рудинский Александр Вадимович
  • Шенгелия Михаил Владимирович
RU2586078C2
Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех 2019
  • Мужичек Сергей Михайлович
  • Филонов Андрей Александрович
  • Скрынников Андрей Александрович
  • Федотов Александр Юрьевич
  • Ткачева Ольга Олеговна
  • Викулова Юлия Михайловна
  • Корнилов Андрей Александрович
  • Макашин Сергей Леонидович
RU2713635C1
СПОСОБ ТРАССОВОГО СОПРОВОЖДЕНИЯ ВОЗДУШНЫХ МАНЕВРИРУЮЩИХ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ ПО ПЕЛЕНГОВОЙ ИНФОРМАЦИИ ОТ ОДНОПОЗИЦИОННОЙ СИСТЕМЫ РАДИОТЕХНИЧЕСКОЙ РАЗВЕДКИ ВОЗДУШНОГО БАЗИРОВАНИЯ 2017
  • Белик Борис Викторович
  • Белов Сергей Геннадьевич
  • Верба Владимир Степанович
  • Меркулов Владимир Иванович
  • Миляков Денис Александрович
RU2660498C1
Способ комплексирования информации радиолокационной станции и радиолокационных головок самонаведения ракет, пущенных носителем по воздушной цели при воздействии уводящих по дальности и скорости помех 2021
  • Филонов Андрей Александрович
  • Тезиков Андрей Николаевич
  • Скрынников Андрей Александрович
  • Болдинов Виктор Александрович
  • Федотов Александр Юрьевич
  • Николаев Александр Борисович
  • Хлопков Михаил Игоревич
  • Плаксов Роман Алексеевич
  • Попов Антон Олегович
RU2765145C1
Способ обнаружения маневрирующих малоразмерных воздушных объектов с использованием параметрических преобразований и устройство для его реализации 2023
  • Кадыков Антон Валерьевич
  • Салов Сергей Юрьевич
  • Халилов Эльдар Владимирович
  • Ашурков Иван Сергеевич
  • Лешко Николай Александрович
RU2806448C1

Иллюстрации к изобретению RU 2 553 459 C1

Реферат патента 2015 года СПОСОБ ОБНАРУЖЕНИЯ ТРАЕКТОРИИ МАНЕВРИРУЮЩЕГО ОБЪЕКТА

Предлагаемое изобретение относится к радиолокации и может быть использовано в радиолокационной технике для обнаружения траектории маневрирующего объекта. Достигаемый технический результат изобретения - повышение вероятности обнаружения траектории маневрирующего объекта. Указанный результат предлагаемого изобретения достигается за счет введения ускорения в вектор измеряемых параметров сигнала, отраженного от маневрирующего объекта, а также за счет введения многоканальности по ускорению, обеспечивающей компенсацию межпериодных фазовых набегов, вызванных ускоренным движением объекта, и за счет оценки скорости изменения доплеровской составляющей. 2 ил.

Формула изобретения RU 2 553 459 C1

Способ обнаружения траектории маневрирующего объекта, заключающийся в том, что зондируют пространство пачками когерентных радиоимпульсов, осуществляют аналого-цифровое преобразование отраженного от маневрирующего объекта комплексного сигнала, представленного синфазной (действительной) и квадратурной (мнимой) составляющими, получают выборки сигналов, осуществляют дискретное преобразование Фурье, определяют модули полученных значений, вычисляют смешанную апостериорную плотность распределения вероятностей в множестве точек, определяемых амплитудой, дальностью, скоростью, ускорением, вычисляют отношение количества точек, в которых объект существует в момент вычислений и на предыдущем шаге, к общему количеству точек, сравнивают полученное отношение с порогом, на основании сравнения принимают решение об обнаружении или необнаружении траектории объекта, отличающийся тем, что дискретное преобразование Фурье осуществляют для множества каналов по ускорению, в каждом из которых перед вычислением дискретного преобразования Фурье осуществляют фазовый сдвиг, для компенсации межпериодного фазового набега за счет ускорения, в соответствии с фазовыми сдвигами формируют оценки ускорения, являющиеся координатами точек для вычисления смешанной апостериорной плотности pacпpeдeлeния вероятностей.

Документы, цитированные в отчете о поиске Патент 2015 года RU2553459C1

СПОСОБ ОБНАРУЖЕНИЯ ТРАЕКТОРИИ ОБЪЕКТА И РАДИОЛОКАЦИОННАЯ СТАНЦИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2006
  • Бисярин Игорь Александрович
  • Кисляков Валентин Иванович
  • Реутов Владимир Аркадьевич
  • Лужных Сергей Назарович
RU2347236C2
УСТРОЙСТВО СОПРОВОЖДЕНИЯ ТРАЕКТОРИИ ДВИЖУЩИХСЯ ОБЪЕКТОВ 1994
  • Саешников В.С.
RU2079150C1
СЛЕДЯЩАЯ СИСТЕМА СОПРОВОЖДЕНИЯ ПОДВИЖНЫХ ОБЪЕКТОВ 2008
  • Рыбас Александр Леонидович
  • Семилет Виктор Васильевич
  • Нечепуренко Юрий Григорьевич
  • Жуков Александр Викторович
  • Александров Евгений Васильевич
  • Черкасов Александр Николаевич
  • Денисов Игорь Васильевич
RU2381524C1
СПОСОБ ОБНАРУЖЕНИЯ ТРАЕКТОРИИ ОБЪЕКТА 2009
  • Ефимов Виктор Владимирович
  • Комраков Евгений Вячеславович
  • Ромицын Сергей Алексеевич
  • Щербаков Александр Александрович
RU2427002C1
US 6121915 А, 19.09.2000
US 6147638 A, 14.11.2000
EP 588687 A1, 23.03.1994
WO 2003083511 A1, 09.10.2003

RU 2 553 459 C1

Авторы

Белокуров Владимир Александрович

Козлов Дмитрий Николаевич

Кошелев Виталий Иванович

Даты

2015-06-20Публикация

2014-02-10Подача